Reduced spatial extent of extreme storms at higher temperatures

Extreme precipitation intensity is expected to increase in proportion to the water‐holding capacity of the atmosphere. However, increases beyond this expectation have been observed, implying that changes in storm dynamics may be occurring alongside changes in moisture availability. Such changes impl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2016-04, Vol.43 (8), p.4026-4032
Hauptverfasser: Wasko, Conrad, Sharma, Ashish, Westra, Seth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4032
container_issue 8
container_start_page 4026
container_title Geophysical research letters
container_volume 43
creator Wasko, Conrad
Sharma, Ashish
Westra, Seth
description Extreme precipitation intensity is expected to increase in proportion to the water‐holding capacity of the atmosphere. However, increases beyond this expectation have been observed, implying that changes in storm dynamics may be occurring alongside changes in moisture availability. Such changes imply shifts in the spatial organization of storms, and we test this by analyzing present‐day sensitivities between storm spatial organization and near‐surface atmospheric temperature. We show that both the total precipitation depth and the peak precipitation intensity increases with temperature, while the storm's spatial extent decreases. This suggests that storm cells intensify at warmer temperatures, with a greater total amount of moisture in the storm, as well as a redistribution of moisture toward the storm center. The results have significant implications for the severity of flooding, as precipitation may become both more intense and spatially concentrated in a warming climate. Key Points Spatial extent of storms reduces as temperatures increase Storm patterns are less uniform at higher temperatures Moisture is redistributed from the storm boundaries to the storm center
doi_str_mv 10.1002/2016GL068509
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816079128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816079128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5040-fb0d7517fd163045e031bbb734e325f2d00021b63c92573d5b54fe86663e12413</originalsourceid><addsrcrecordid>eNqF0UtLw0AQB_BFFKyPmx8g4MWD0dn35iRStAoFoeh5yWNiU5Im7m7Qfnu31IN4qKeZw4_dmfkTckHhhgKwWwZUzeagjITsgExoJkRqAPQhmQBksWdaHZMT71cAwIHTCblbYDWWWCV-yEOTtwl-BVyHpK-3ncMOEx961_kkD8myeV-iSwJ2A7o8jA79GTmq89bj-U89JW-PD6_Tp3T-Mnue3s_TUoKAtC6g0pLquqKKg5AYPy-KQnOBnMmaVXEgRgvFy4xJzStZSFGjUUpxpExQfkqudu8Orv8Y0QfbNb7Ets3X2I_eUkMV6Iwy8z_VWTxG3D-L9PIPXfWjW8dFLI2ImcwA36u0MQqM1DKq650qXe-9w9oOrulyt7EU7DYe-zueyNmOfzYtbvZaO1vMpeAxsm-YNIyp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788608575</pqid></control><display><type>article</type><title>Reduced spatial extent of extreme storms at higher temperatures</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Wasko, Conrad ; Sharma, Ashish ; Westra, Seth</creator><creatorcontrib>Wasko, Conrad ; Sharma, Ashish ; Westra, Seth</creatorcontrib><description>Extreme precipitation intensity is expected to increase in proportion to the water‐holding capacity of the atmosphere. However, increases beyond this expectation have been observed, implying that changes in storm dynamics may be occurring alongside changes in moisture availability. Such changes imply shifts in the spatial organization of storms, and we test this by analyzing present‐day sensitivities between storm spatial organization and near‐surface atmospheric temperature. We show that both the total precipitation depth and the peak precipitation intensity increases with temperature, while the storm's spatial extent decreases. This suggests that storm cells intensify at warmer temperatures, with a greater total amount of moisture in the storm, as well as a redistribution of moisture toward the storm center. The results have significant implications for the severity of flooding, as precipitation may become both more intense and spatially concentrated in a warming climate. Key Points Spatial extent of storms reduces as temperatures increase Storm patterns are less uniform at higher temperatures Moisture is redistributed from the storm boundaries to the storm center</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL068509</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Atmosphere ; Atmospheric precipitations ; Atmospheric temperature ; Availability ; Boundaries ; Capacity ; Cells ; Climate ; Climate change ; Depth ; Dynamics ; extreme ; Extreme weather ; Flooding ; Global warming ; High temperature ; Moisture ; Moisture availability ; Moisture content ; Organizations ; Precipitation ; Precipitation (meteorology) ; Precipitation intensity ; Rainfall intensity ; Sensitivity analysis ; spatial ; Spatial analysis ; Storms ; Temperature ; Temperature effects ; Water</subject><ispartof>Geophysical research letters, 2016-04, Vol.43 (8), p.4026-4032</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5040-fb0d7517fd163045e031bbb734e325f2d00021b63c92573d5b54fe86663e12413</citedby><cites>FETCH-LOGICAL-c5040-fb0d7517fd163045e031bbb734e325f2d00021b63c92573d5b54fe86663e12413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL068509$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL068509$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Wasko, Conrad</creatorcontrib><creatorcontrib>Sharma, Ashish</creatorcontrib><creatorcontrib>Westra, Seth</creatorcontrib><title>Reduced spatial extent of extreme storms at higher temperatures</title><title>Geophysical research letters</title><description>Extreme precipitation intensity is expected to increase in proportion to the water‐holding capacity of the atmosphere. However, increases beyond this expectation have been observed, implying that changes in storm dynamics may be occurring alongside changes in moisture availability. Such changes imply shifts in the spatial organization of storms, and we test this by analyzing present‐day sensitivities between storm spatial organization and near‐surface atmospheric temperature. We show that both the total precipitation depth and the peak precipitation intensity increases with temperature, while the storm's spatial extent decreases. This suggests that storm cells intensify at warmer temperatures, with a greater total amount of moisture in the storm, as well as a redistribution of moisture toward the storm center. The results have significant implications for the severity of flooding, as precipitation may become both more intense and spatially concentrated in a warming climate. Key Points Spatial extent of storms reduces as temperatures increase Storm patterns are less uniform at higher temperatures Moisture is redistributed from the storm boundaries to the storm center</description><subject>Atmosphere</subject><subject>Atmospheric precipitations</subject><subject>Atmospheric temperature</subject><subject>Availability</subject><subject>Boundaries</subject><subject>Capacity</subject><subject>Cells</subject><subject>Climate</subject><subject>Climate change</subject><subject>Depth</subject><subject>Dynamics</subject><subject>extreme</subject><subject>Extreme weather</subject><subject>Flooding</subject><subject>Global warming</subject><subject>High temperature</subject><subject>Moisture</subject><subject>Moisture availability</subject><subject>Moisture content</subject><subject>Organizations</subject><subject>Precipitation</subject><subject>Precipitation (meteorology)</subject><subject>Precipitation intensity</subject><subject>Rainfall intensity</subject><subject>Sensitivity analysis</subject><subject>spatial</subject><subject>Spatial analysis</subject><subject>Storms</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Water</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLw0AQB_BFFKyPmx8g4MWD0dn35iRStAoFoeh5yWNiU5Im7m7Qfnu31IN4qKeZw4_dmfkTckHhhgKwWwZUzeagjITsgExoJkRqAPQhmQBksWdaHZMT71cAwIHTCblbYDWWWCV-yEOTtwl-BVyHpK-3ncMOEx961_kkD8myeV-iSwJ2A7o8jA79GTmq89bj-U89JW-PD6_Tp3T-Mnue3s_TUoKAtC6g0pLquqKKg5AYPy-KQnOBnMmaVXEgRgvFy4xJzStZSFGjUUpxpExQfkqudu8Orv8Y0QfbNb7Ets3X2I_eUkMV6Iwy8z_VWTxG3D-L9PIPXfWjW8dFLI2ImcwA36u0MQqM1DKq650qXe-9w9oOrulyt7EU7DYe-zueyNmOfzYtbvZaO1vMpeAxsm-YNIyp</recordid><startdate>20160428</startdate><enddate>20160428</enddate><creator>Wasko, Conrad</creator><creator>Sharma, Ashish</creator><creator>Westra, Seth</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20160428</creationdate><title>Reduced spatial extent of extreme storms at higher temperatures</title><author>Wasko, Conrad ; Sharma, Ashish ; Westra, Seth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5040-fb0d7517fd163045e031bbb734e325f2d00021b63c92573d5b54fe86663e12413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmosphere</topic><topic>Atmospheric precipitations</topic><topic>Atmospheric temperature</topic><topic>Availability</topic><topic>Boundaries</topic><topic>Capacity</topic><topic>Cells</topic><topic>Climate</topic><topic>Climate change</topic><topic>Depth</topic><topic>Dynamics</topic><topic>extreme</topic><topic>Extreme weather</topic><topic>Flooding</topic><topic>Global warming</topic><topic>High temperature</topic><topic>Moisture</topic><topic>Moisture availability</topic><topic>Moisture content</topic><topic>Organizations</topic><topic>Precipitation</topic><topic>Precipitation (meteorology)</topic><topic>Precipitation intensity</topic><topic>Rainfall intensity</topic><topic>Sensitivity analysis</topic><topic>spatial</topic><topic>Spatial analysis</topic><topic>Storms</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wasko, Conrad</creatorcontrib><creatorcontrib>Sharma, Ashish</creatorcontrib><creatorcontrib>Westra, Seth</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wasko, Conrad</au><au>Sharma, Ashish</au><au>Westra, Seth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced spatial extent of extreme storms at higher temperatures</atitle><jtitle>Geophysical research letters</jtitle><date>2016-04-28</date><risdate>2016</risdate><volume>43</volume><issue>8</issue><spage>4026</spage><epage>4032</epage><pages>4026-4032</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Extreme precipitation intensity is expected to increase in proportion to the water‐holding capacity of the atmosphere. However, increases beyond this expectation have been observed, implying that changes in storm dynamics may be occurring alongside changes in moisture availability. Such changes imply shifts in the spatial organization of storms, and we test this by analyzing present‐day sensitivities between storm spatial organization and near‐surface atmospheric temperature. We show that both the total precipitation depth and the peak precipitation intensity increases with temperature, while the storm's spatial extent decreases. This suggests that storm cells intensify at warmer temperatures, with a greater total amount of moisture in the storm, as well as a redistribution of moisture toward the storm center. The results have significant implications for the severity of flooding, as precipitation may become both more intense and spatially concentrated in a warming climate. Key Points Spatial extent of storms reduces as temperatures increase Storm patterns are less uniform at higher temperatures Moisture is redistributed from the storm boundaries to the storm center</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2016GL068509</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2016-04, Vol.43 (8), p.4026-4032
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1816079128
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Atmosphere
Atmospheric precipitations
Atmospheric temperature
Availability
Boundaries
Capacity
Cells
Climate
Climate change
Depth
Dynamics
extreme
Extreme weather
Flooding
Global warming
High temperature
Moisture
Moisture availability
Moisture content
Organizations
Precipitation
Precipitation (meteorology)
Precipitation intensity
Rainfall intensity
Sensitivity analysis
spatial
Spatial analysis
Storms
Temperature
Temperature effects
Water
title Reduced spatial extent of extreme storms at higher temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20spatial%20extent%20of%20extreme%20storms%20at%20higher%20temperatures&rft.jtitle=Geophysical%20research%20letters&rft.au=Wasko,%20Conrad&rft.date=2016-04-28&rft.volume=43&rft.issue=8&rft.spage=4026&rft.epage=4032&rft.pages=4026-4032&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL068509&rft_dat=%3Cproquest_cross%3E1816079128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1788608575&rft_id=info:pmid/&rfr_iscdi=true