Reduced spatial extent of extreme storms at higher temperatures
Extreme precipitation intensity is expected to increase in proportion to the water‐holding capacity of the atmosphere. However, increases beyond this expectation have been observed, implying that changes in storm dynamics may be occurring alongside changes in moisture availability. Such changes impl...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2016-04, Vol.43 (8), p.4026-4032 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4032 |
---|---|
container_issue | 8 |
container_start_page | 4026 |
container_title | Geophysical research letters |
container_volume | 43 |
creator | Wasko, Conrad Sharma, Ashish Westra, Seth |
description | Extreme precipitation intensity is expected to increase in proportion to the water‐holding capacity of the atmosphere. However, increases beyond this expectation have been observed, implying that changes in storm dynamics may be occurring alongside changes in moisture availability. Such changes imply shifts in the spatial organization of storms, and we test this by analyzing present‐day sensitivities between storm spatial organization and near‐surface atmospheric temperature. We show that both the total precipitation depth and the peak precipitation intensity increases with temperature, while the storm's spatial extent decreases. This suggests that storm cells intensify at warmer temperatures, with a greater total amount of moisture in the storm, as well as a redistribution of moisture toward the storm center. The results have significant implications for the severity of flooding, as precipitation may become both more intense and spatially concentrated in a warming climate.
Key Points
Spatial extent of storms reduces as temperatures increase
Storm patterns are less uniform at higher temperatures
Moisture is redistributed from the storm boundaries to the storm center |
doi_str_mv | 10.1002/2016GL068509 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816079128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816079128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5040-fb0d7517fd163045e031bbb734e325f2d00021b63c92573d5b54fe86663e12413</originalsourceid><addsrcrecordid>eNqF0UtLw0AQB_BFFKyPmx8g4MWD0dn35iRStAoFoeh5yWNiU5Im7m7Qfnu31IN4qKeZw4_dmfkTckHhhgKwWwZUzeagjITsgExoJkRqAPQhmQBksWdaHZMT71cAwIHTCblbYDWWWCV-yEOTtwl-BVyHpK-3ncMOEx961_kkD8myeV-iSwJ2A7o8jA79GTmq89bj-U89JW-PD6_Tp3T-Mnue3s_TUoKAtC6g0pLquqKKg5AYPy-KQnOBnMmaVXEgRgvFy4xJzStZSFGjUUpxpExQfkqudu8Orv8Y0QfbNb7Ets3X2I_eUkMV6Iwy8z_VWTxG3D-L9PIPXfWjW8dFLI2ImcwA36u0MQqM1DKq650qXe-9w9oOrulyt7EU7DYe-zueyNmOfzYtbvZaO1vMpeAxsm-YNIyp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788608575</pqid></control><display><type>article</type><title>Reduced spatial extent of extreme storms at higher temperatures</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Wasko, Conrad ; Sharma, Ashish ; Westra, Seth</creator><creatorcontrib>Wasko, Conrad ; Sharma, Ashish ; Westra, Seth</creatorcontrib><description>Extreme precipitation intensity is expected to increase in proportion to the water‐holding capacity of the atmosphere. However, increases beyond this expectation have been observed, implying that changes in storm dynamics may be occurring alongside changes in moisture availability. Such changes imply shifts in the spatial organization of storms, and we test this by analyzing present‐day sensitivities between storm spatial organization and near‐surface atmospheric temperature. We show that both the total precipitation depth and the peak precipitation intensity increases with temperature, while the storm's spatial extent decreases. This suggests that storm cells intensify at warmer temperatures, with a greater total amount of moisture in the storm, as well as a redistribution of moisture toward the storm center. The results have significant implications for the severity of flooding, as precipitation may become both more intense and spatially concentrated in a warming climate.
Key Points
Spatial extent of storms reduces as temperatures increase
Storm patterns are less uniform at higher temperatures
Moisture is redistributed from the storm boundaries to the storm center</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL068509</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Atmosphere ; Atmospheric precipitations ; Atmospheric temperature ; Availability ; Boundaries ; Capacity ; Cells ; Climate ; Climate change ; Depth ; Dynamics ; extreme ; Extreme weather ; Flooding ; Global warming ; High temperature ; Moisture ; Moisture availability ; Moisture content ; Organizations ; Precipitation ; Precipitation (meteorology) ; Precipitation intensity ; Rainfall intensity ; Sensitivity analysis ; spatial ; Spatial analysis ; Storms ; Temperature ; Temperature effects ; Water</subject><ispartof>Geophysical research letters, 2016-04, Vol.43 (8), p.4026-4032</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5040-fb0d7517fd163045e031bbb734e325f2d00021b63c92573d5b54fe86663e12413</citedby><cites>FETCH-LOGICAL-c5040-fb0d7517fd163045e031bbb734e325f2d00021b63c92573d5b54fe86663e12413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL068509$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL068509$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Wasko, Conrad</creatorcontrib><creatorcontrib>Sharma, Ashish</creatorcontrib><creatorcontrib>Westra, Seth</creatorcontrib><title>Reduced spatial extent of extreme storms at higher temperatures</title><title>Geophysical research letters</title><description>Extreme precipitation intensity is expected to increase in proportion to the water‐holding capacity of the atmosphere. However, increases beyond this expectation have been observed, implying that changes in storm dynamics may be occurring alongside changes in moisture availability. Such changes imply shifts in the spatial organization of storms, and we test this by analyzing present‐day sensitivities between storm spatial organization and near‐surface atmospheric temperature. We show that both the total precipitation depth and the peak precipitation intensity increases with temperature, while the storm's spatial extent decreases. This suggests that storm cells intensify at warmer temperatures, with a greater total amount of moisture in the storm, as well as a redistribution of moisture toward the storm center. The results have significant implications for the severity of flooding, as precipitation may become both more intense and spatially concentrated in a warming climate.
Key Points
Spatial extent of storms reduces as temperatures increase
Storm patterns are less uniform at higher temperatures
Moisture is redistributed from the storm boundaries to the storm center</description><subject>Atmosphere</subject><subject>Atmospheric precipitations</subject><subject>Atmospheric temperature</subject><subject>Availability</subject><subject>Boundaries</subject><subject>Capacity</subject><subject>Cells</subject><subject>Climate</subject><subject>Climate change</subject><subject>Depth</subject><subject>Dynamics</subject><subject>extreme</subject><subject>Extreme weather</subject><subject>Flooding</subject><subject>Global warming</subject><subject>High temperature</subject><subject>Moisture</subject><subject>Moisture availability</subject><subject>Moisture content</subject><subject>Organizations</subject><subject>Precipitation</subject><subject>Precipitation (meteorology)</subject><subject>Precipitation intensity</subject><subject>Rainfall intensity</subject><subject>Sensitivity analysis</subject><subject>spatial</subject><subject>Spatial analysis</subject><subject>Storms</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Water</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLw0AQB_BFFKyPmx8g4MWD0dn35iRStAoFoeh5yWNiU5Im7m7Qfnu31IN4qKeZw4_dmfkTckHhhgKwWwZUzeagjITsgExoJkRqAPQhmQBksWdaHZMT71cAwIHTCblbYDWWWCV-yEOTtwl-BVyHpK-3ncMOEx961_kkD8myeV-iSwJ2A7o8jA79GTmq89bj-U89JW-PD6_Tp3T-Mnue3s_TUoKAtC6g0pLquqKKg5AYPy-KQnOBnMmaVXEgRgvFy4xJzStZSFGjUUpxpExQfkqudu8Orv8Y0QfbNb7Ets3X2I_eUkMV6Iwy8z_VWTxG3D-L9PIPXfWjW8dFLI2ImcwA36u0MQqM1DKq650qXe-9w9oOrulyt7EU7DYe-zueyNmOfzYtbvZaO1vMpeAxsm-YNIyp</recordid><startdate>20160428</startdate><enddate>20160428</enddate><creator>Wasko, Conrad</creator><creator>Sharma, Ashish</creator><creator>Westra, Seth</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20160428</creationdate><title>Reduced spatial extent of extreme storms at higher temperatures</title><author>Wasko, Conrad ; Sharma, Ashish ; Westra, Seth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5040-fb0d7517fd163045e031bbb734e325f2d00021b63c92573d5b54fe86663e12413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmosphere</topic><topic>Atmospheric precipitations</topic><topic>Atmospheric temperature</topic><topic>Availability</topic><topic>Boundaries</topic><topic>Capacity</topic><topic>Cells</topic><topic>Climate</topic><topic>Climate change</topic><topic>Depth</topic><topic>Dynamics</topic><topic>extreme</topic><topic>Extreme weather</topic><topic>Flooding</topic><topic>Global warming</topic><topic>High temperature</topic><topic>Moisture</topic><topic>Moisture availability</topic><topic>Moisture content</topic><topic>Organizations</topic><topic>Precipitation</topic><topic>Precipitation (meteorology)</topic><topic>Precipitation intensity</topic><topic>Rainfall intensity</topic><topic>Sensitivity analysis</topic><topic>spatial</topic><topic>Spatial analysis</topic><topic>Storms</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wasko, Conrad</creatorcontrib><creatorcontrib>Sharma, Ashish</creatorcontrib><creatorcontrib>Westra, Seth</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wasko, Conrad</au><au>Sharma, Ashish</au><au>Westra, Seth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced spatial extent of extreme storms at higher temperatures</atitle><jtitle>Geophysical research letters</jtitle><date>2016-04-28</date><risdate>2016</risdate><volume>43</volume><issue>8</issue><spage>4026</spage><epage>4032</epage><pages>4026-4032</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Extreme precipitation intensity is expected to increase in proportion to the water‐holding capacity of the atmosphere. However, increases beyond this expectation have been observed, implying that changes in storm dynamics may be occurring alongside changes in moisture availability. Such changes imply shifts in the spatial organization of storms, and we test this by analyzing present‐day sensitivities between storm spatial organization and near‐surface atmospheric temperature. We show that both the total precipitation depth and the peak precipitation intensity increases with temperature, while the storm's spatial extent decreases. This suggests that storm cells intensify at warmer temperatures, with a greater total amount of moisture in the storm, as well as a redistribution of moisture toward the storm center. The results have significant implications for the severity of flooding, as precipitation may become both more intense and spatially concentrated in a warming climate.
Key Points
Spatial extent of storms reduces as temperatures increase
Storm patterns are less uniform at higher temperatures
Moisture is redistributed from the storm boundaries to the storm center</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2016GL068509</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2016-04, Vol.43 (8), p.4026-4032 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816079128 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Atmosphere Atmospheric precipitations Atmospheric temperature Availability Boundaries Capacity Cells Climate Climate change Depth Dynamics extreme Extreme weather Flooding Global warming High temperature Moisture Moisture availability Moisture content Organizations Precipitation Precipitation (meteorology) Precipitation intensity Rainfall intensity Sensitivity analysis spatial Spatial analysis Storms Temperature Temperature effects Water |
title | Reduced spatial extent of extreme storms at higher temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20spatial%20extent%20of%20extreme%20storms%20at%20higher%20temperatures&rft.jtitle=Geophysical%20research%20letters&rft.au=Wasko,%20Conrad&rft.date=2016-04-28&rft.volume=43&rft.issue=8&rft.spage=4026&rft.epage=4032&rft.pages=4026-4032&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL068509&rft_dat=%3Cproquest_cross%3E1816079128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1788608575&rft_id=info:pmid/&rfr_iscdi=true |