Metaheuristics for the single machine weighted quadratic tardiness scheduling problem

This paper considers the single machine scheduling problem with weighted quadratic tardiness costs. Three metaheuristics are presented, namely iterated local search, variable greedy and steady-state genetic algorithm procedures. These address a gap in the existing literature, which includes branch-a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2016-06, Vol.70, p.115-126
Hauptverfasser: Gonçalves, Tomás C., Valente, Jorge M.S., Schaller, Jeffrey E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue
container_start_page 115
container_title Computers & operations research
container_volume 70
creator Gonçalves, Tomás C.
Valente, Jorge M.S.
Schaller, Jeffrey E.
description This paper considers the single machine scheduling problem with weighted quadratic tardiness costs. Three metaheuristics are presented, namely iterated local search, variable greedy and steady-state genetic algorithm procedures. These address a gap in the existing literature, which includes branch-and-bound algorithms (which can provide optimal solutions for small problems only) and dispatching rules (which are efficient and capable of providing adequate solutions for even quite large instances). A simple local search procedure which incorporates problem specific information is also proposed. The computational results show that the proposed metaheuristics clearly outperform the best of the existing procedures. Also, they provide an optimal solution for all (or nearly all, in the case of the variable greedy heuristic) the smaller size problems. The metaheuristics are quite close in what regards solution quality. Nevertheless, the iterated local search method provides the best solution, though at the expense of additional computational time. The exact opposite is true for the variable greedy procedure, while the genetic algorithm is a good all-around performer. •Metaheuristics for single machine weighted quadratic tardiness scheduling.•Address gap in existing literature (B&B, dispatching rules).•Simple local search with problem specific information.•Large and diversified set of instances.•Proposed metaheuristics outperform existing procedures in solution quality.
doi_str_mv 10.1016/j.cor.2016.01.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816075147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030505481600006X</els_id><sourcerecordid>1816075147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-46da73e22a738baa2349d9fae69ae12cb9b37c82c4993b00ee52f5f06e8881b03</originalsourceid><addsrcrecordid>eNp9kMtOxCAUhonRxHH0AdyRuHHTCpQWGldm4i3RuHESd4TS0ylNLzNANb69TMaVC8-CQ8L3H-BD6JKSlBJa3HSpmVzK4jYlNCWEH6EFlSJLRJF_HKMFyUiekJzLU3TmfUdiCUYXaP0KQbcwO-uDNR43k8OhBeztuOkBD9q0dgT8BXbTBqjxbta10xHFQbs6HnmPvWmhnvuYwFs3VT0M5-ik0b2Hi9--ROuH-_fVU_Ly9vi8untJDM95SHhRa5EBY3GVldYs42VdNhqKUgNlpiqrTBjJDC_LrCIEIGdN3pACpJS0ItkSXR_mxnt3M_igBusN9L0eYZq9opIWROSUi4he_UG7aXZjfJ2iopCy3MuJFD1Qxk3eO2jU1tlBu29FidqLVp2KotVetCJURdExc3vIQPzppwWnvLEwGqitAxNUPdl_0j_3PIa6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768890548</pqid></control><display><type>article</type><title>Metaheuristics for the single machine weighted quadratic tardiness scheduling problem</title><source>Elsevier ScienceDirect Journals</source><creator>Gonçalves, Tomás C. ; Valente, Jorge M.S. ; Schaller, Jeffrey E.</creator><creatorcontrib>Gonçalves, Tomás C. ; Valente, Jorge M.S. ; Schaller, Jeffrey E.</creatorcontrib><description>This paper considers the single machine scheduling problem with weighted quadratic tardiness costs. Three metaheuristics are presented, namely iterated local search, variable greedy and steady-state genetic algorithm procedures. These address a gap in the existing literature, which includes branch-and-bound algorithms (which can provide optimal solutions for small problems only) and dispatching rules (which are efficient and capable of providing adequate solutions for even quite large instances). A simple local search procedure which incorporates problem specific information is also proposed. The computational results show that the proposed metaheuristics clearly outperform the best of the existing procedures. Also, they provide an optimal solution for all (or nearly all, in the case of the variable greedy heuristic) the smaller size problems. The metaheuristics are quite close in what regards solution quality. Nevertheless, the iterated local search method provides the best solution, though at the expense of additional computational time. The exact opposite is true for the variable greedy procedure, while the genetic algorithm is a good all-around performer. •Metaheuristics for single machine weighted quadratic tardiness scheduling.•Address gap in existing literature (B&amp;B, dispatching rules).•Simple local search with problem specific information.•Large and diversified set of instances.•Proposed metaheuristics outperform existing procedures in solution quality.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2016.01.004</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Branch &amp; bound algorithms ; Computation ; Genetic algorithm ; Genetic algorithms ; Heuristic ; Heuristic methods ; Iterated local search ; Iterative methods ; Mathematical models ; Metaheuristics ; Operations research ; Optimization ; Production scheduling ; Quadratic programming ; Scheduling ; Searching ; Single machine ; Studies ; Variable greedy ; Weighted quadratic tardiness</subject><ispartof>Computers &amp; operations research, 2016-06, Vol.70, p.115-126</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Jun 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-46da73e22a738baa2349d9fae69ae12cb9b37c82c4993b00ee52f5f06e8881b03</citedby><cites>FETCH-LOGICAL-c454t-46da73e22a738baa2349d9fae69ae12cb9b37c82c4993b00ee52f5f06e8881b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030505481600006X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gonçalves, Tomás C.</creatorcontrib><creatorcontrib>Valente, Jorge M.S.</creatorcontrib><creatorcontrib>Schaller, Jeffrey E.</creatorcontrib><title>Metaheuristics for the single machine weighted quadratic tardiness scheduling problem</title><title>Computers &amp; operations research</title><description>This paper considers the single machine scheduling problem with weighted quadratic tardiness costs. Three metaheuristics are presented, namely iterated local search, variable greedy and steady-state genetic algorithm procedures. These address a gap in the existing literature, which includes branch-and-bound algorithms (which can provide optimal solutions for small problems only) and dispatching rules (which are efficient and capable of providing adequate solutions for even quite large instances). A simple local search procedure which incorporates problem specific information is also proposed. The computational results show that the proposed metaheuristics clearly outperform the best of the existing procedures. Also, they provide an optimal solution for all (or nearly all, in the case of the variable greedy heuristic) the smaller size problems. The metaheuristics are quite close in what regards solution quality. Nevertheless, the iterated local search method provides the best solution, though at the expense of additional computational time. The exact opposite is true for the variable greedy procedure, while the genetic algorithm is a good all-around performer. •Metaheuristics for single machine weighted quadratic tardiness scheduling.•Address gap in existing literature (B&amp;B, dispatching rules).•Simple local search with problem specific information.•Large and diversified set of instances.•Proposed metaheuristics outperform existing procedures in solution quality.</description><subject>Branch &amp; bound algorithms</subject><subject>Computation</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Iterated local search</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Metaheuristics</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Production scheduling</subject><subject>Quadratic programming</subject><subject>Scheduling</subject><subject>Searching</subject><subject>Single machine</subject><subject>Studies</subject><subject>Variable greedy</subject><subject>Weighted quadratic tardiness</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOxCAUhonRxHH0AdyRuHHTCpQWGldm4i3RuHESd4TS0ylNLzNANb69TMaVC8-CQ8L3H-BD6JKSlBJa3HSpmVzK4jYlNCWEH6EFlSJLRJF_HKMFyUiekJzLU3TmfUdiCUYXaP0KQbcwO-uDNR43k8OhBeztuOkBD9q0dgT8BXbTBqjxbta10xHFQbs6HnmPvWmhnvuYwFs3VT0M5-ik0b2Hi9--ROuH-_fVU_Ly9vi8untJDM95SHhRa5EBY3GVldYs42VdNhqKUgNlpiqrTBjJDC_LrCIEIGdN3pACpJS0ItkSXR_mxnt3M_igBusN9L0eYZq9opIWROSUi4he_UG7aXZjfJ2iopCy3MuJFD1Qxk3eO2jU1tlBu29FidqLVp2KotVetCJURdExc3vIQPzppwWnvLEwGqitAxNUPdl_0j_3PIa6</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Gonçalves, Tomás C.</creator><creator>Valente, Jorge M.S.</creator><creator>Schaller, Jeffrey E.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160601</creationdate><title>Metaheuristics for the single machine weighted quadratic tardiness scheduling problem</title><author>Gonçalves, Tomás C. ; Valente, Jorge M.S. ; Schaller, Jeffrey E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-46da73e22a738baa2349d9fae69ae12cb9b37c82c4993b00ee52f5f06e8881b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Branch &amp; bound algorithms</topic><topic>Computation</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Iterated local search</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Metaheuristics</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Production scheduling</topic><topic>Quadratic programming</topic><topic>Scheduling</topic><topic>Searching</topic><topic>Single machine</topic><topic>Studies</topic><topic>Variable greedy</topic><topic>Weighted quadratic tardiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonçalves, Tomás C.</creatorcontrib><creatorcontrib>Valente, Jorge M.S.</creatorcontrib><creatorcontrib>Schaller, Jeffrey E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonçalves, Tomás C.</au><au>Valente, Jorge M.S.</au><au>Schaller, Jeffrey E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metaheuristics for the single machine weighted quadratic tardiness scheduling problem</atitle><jtitle>Computers &amp; operations research</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>70</volume><spage>115</spage><epage>126</epage><pages>115-126</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>This paper considers the single machine scheduling problem with weighted quadratic tardiness costs. Three metaheuristics are presented, namely iterated local search, variable greedy and steady-state genetic algorithm procedures. These address a gap in the existing literature, which includes branch-and-bound algorithms (which can provide optimal solutions for small problems only) and dispatching rules (which are efficient and capable of providing adequate solutions for even quite large instances). A simple local search procedure which incorporates problem specific information is also proposed. The computational results show that the proposed metaheuristics clearly outperform the best of the existing procedures. Also, they provide an optimal solution for all (or nearly all, in the case of the variable greedy heuristic) the smaller size problems. The metaheuristics are quite close in what regards solution quality. Nevertheless, the iterated local search method provides the best solution, though at the expense of additional computational time. The exact opposite is true for the variable greedy procedure, while the genetic algorithm is a good all-around performer. •Metaheuristics for single machine weighted quadratic tardiness scheduling.•Address gap in existing literature (B&amp;B, dispatching rules).•Simple local search with problem specific information.•Large and diversified set of instances.•Proposed metaheuristics outperform existing procedures in solution quality.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2016.01.004</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2016-06, Vol.70, p.115-126
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_miscellaneous_1816075147
source Elsevier ScienceDirect Journals
subjects Branch & bound algorithms
Computation
Genetic algorithm
Genetic algorithms
Heuristic
Heuristic methods
Iterated local search
Iterative methods
Mathematical models
Metaheuristics
Operations research
Optimization
Production scheduling
Quadratic programming
Scheduling
Searching
Single machine
Studies
Variable greedy
Weighted quadratic tardiness
title Metaheuristics for the single machine weighted quadratic tardiness scheduling problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metaheuristics%20for%20the%20single%20machine%20weighted%20quadratic%20tardiness%20scheduling%20problem&rft.jtitle=Computers%20&%20operations%20research&rft.au=Gon%C3%A7alves,%20Tom%C3%A1s%20C.&rft.date=2016-06-01&rft.volume=70&rft.spage=115&rft.epage=126&rft.pages=115-126&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2016.01.004&rft_dat=%3Cproquest_cross%3E1816075147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768890548&rft_id=info:pmid/&rft_els_id=S030505481600006X&rfr_iscdi=true