Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant

[Display omitted] •A thermodynamic model for a solar hybrid gas turbine power plant is presented.•Variable conditions for solar irradiance and ambient temperature are considered.•Hybridization intends to get a stable power, independent of solar irradiance.•Numerical parameters are taken from an expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2016-05, Vol.115, p.89-102
Hauptverfasser: Santos, M.J., Merchán, R.P., Medina, A., Calvo Hernández, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue
container_start_page 89
container_title Energy conversion and management
container_volume 115
creator Santos, M.J.
Merchán, R.P.
Medina, A.
Calvo Hernández, A.
description [Display omitted] •A thermodynamic model for a solar hybrid gas turbine power plant is presented.•Variable conditions for solar irradiance and ambient temperature are considered.•Hybridization intends to get a stable power, independent of solar irradiance.•Numerical parameters are taken from an experimental plant in Spain.•Efficiency in hourly basis for days representative of each season is presented. An entirely thermodynamic model is developed for predicting the performance records of a solar hybrid gas turbine power plant with variable irradiance and ambient temperature conditions. The model considers a serial solar hybridization in those periods when solar irradiance is high enough. A combustion chamber allows to maintain an approximately constant inlet temperature in the turbine ensuring a stable power output. The overall plant thermal efficiency is written as a combination of the thermal efficiencies of the involved subsystems and the required heat exchangers. Numerical values of model input parameters are taken from a central tower installation recently developed near Seville, Spain. Real data for irradiance and external temperature are taken in hourly terms. The curves of several variables are obtained for representative days of all seasons: overall plant efficiency, solar subsystem efficiency, solar share, fuel conversion rate, and power output. The fuel consumption assuming natural gas fueling is calculated and the reduction in greenhouse emissions is discussed. The model can be applied to predict the daily and seasonal evolution of the performance of real installations in terms of a reduced set of parameters.
doi_str_mv 10.1016/j.enconman.2016.02.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816069714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890416300437</els_id><sourcerecordid>1790973356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-43d9dc3bae75bc4d65eab9a69a6474b76eab34e4d26a67dd56f918296a94ab283</originalsourceid><addsrcrecordid>eNqFkE1PxCAQQInRxHX1L5gevbQCpVBumo1fiYkH9SqhMHXZtKVCV7P_XprV8yaTTGZ4M8BD6JLggmDCrzcFDMYPvR4KmuoC0wITeYQWpBYyp5SKY7RIHZ7XErNTdBbjBmNcVpgv0Mcr6OgH3WXTGkLv7W7QvTPZGMA6Mzk_ZL6dz7IRQutDusXA3NLZetcEZ7PoOx2yTx3zaRsaNyTS_0DIxk4P0zk6aXUX4eIvL9H7_d3b6jF_fnl4Wt0-54ZRPuWstNKastEgqsYwyyvQjdQ8BROsETyVJQNmKddcWFvxVpKaSq4l0w2tyyW62u8dg__aQpxU76KBLr0B_DYqUhOOuRSEHUaFxFKUZcUTyveoCT7GAK0ag-t12CmC1exebdS_ezW7V5iqZDoN3uwHIf3520FQ0bhEJqcBzKSsd4dW_ALDq5I1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790973356</pqid></control><display><type>article</type><title>Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant</title><source>Elsevier ScienceDirect Journals</source><creator>Santos, M.J. ; Merchán, R.P. ; Medina, A. ; Calvo Hernández, A.</creator><creatorcontrib>Santos, M.J. ; Merchán, R.P. ; Medina, A. ; Calvo Hernández, A.</creatorcontrib><description>[Display omitted] •A thermodynamic model for a solar hybrid gas turbine power plant is presented.•Variable conditions for solar irradiance and ambient temperature are considered.•Hybridization intends to get a stable power, independent of solar irradiance.•Numerical parameters are taken from an experimental plant in Spain.•Efficiency in hourly basis for days representative of each season is presented. An entirely thermodynamic model is developed for predicting the performance records of a solar hybrid gas turbine power plant with variable irradiance and ambient temperature conditions. The model considers a serial solar hybridization in those periods when solar irradiance is high enough. A combustion chamber allows to maintain an approximately constant inlet temperature in the turbine ensuring a stable power output. The overall plant thermal efficiency is written as a combination of the thermal efficiencies of the involved subsystems and the required heat exchangers. Numerical values of model input parameters are taken from a central tower installation recently developed near Seville, Spain. Real data for irradiance and external temperature are taken in hourly terms. The curves of several variables are obtained for representative days of all seasons: overall plant efficiency, solar subsystem efficiency, solar share, fuel conversion rate, and power output. The fuel consumption assuming natural gas fueling is calculated and the reduction in greenhouse emissions is discussed. The model can be applied to predict the daily and seasonal evolution of the performance of real installations in terms of a reduced set of parameters.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2016.02.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational efficiency ; Computing time ; Electric power generation ; Gas turbine engines ; Gas turbines ; Global plant performance ; Hybrid plants ; Irradiance ; Mathematical models ; Power plants ; Seasonal evolution ; Thermodynamic model ; Thermosolar gas-turbines ; Variable solar irradiance</subject><ispartof>Energy conversion and management, 2016-05, Vol.115, p.89-102</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-43d9dc3bae75bc4d65eab9a69a6474b76eab34e4d26a67dd56f918296a94ab283</citedby><cites>FETCH-LOGICAL-c426t-43d9dc3bae75bc4d65eab9a69a6474b76eab34e4d26a67dd56f918296a94ab283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890416300437$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Santos, M.J.</creatorcontrib><creatorcontrib>Merchán, R.P.</creatorcontrib><creatorcontrib>Medina, A.</creatorcontrib><creatorcontrib>Calvo Hernández, A.</creatorcontrib><title>Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant</title><title>Energy conversion and management</title><description>[Display omitted] •A thermodynamic model for a solar hybrid gas turbine power plant is presented.•Variable conditions for solar irradiance and ambient temperature are considered.•Hybridization intends to get a stable power, independent of solar irradiance.•Numerical parameters are taken from an experimental plant in Spain.•Efficiency in hourly basis for days representative of each season is presented. An entirely thermodynamic model is developed for predicting the performance records of a solar hybrid gas turbine power plant with variable irradiance and ambient temperature conditions. The model considers a serial solar hybridization in those periods when solar irradiance is high enough. A combustion chamber allows to maintain an approximately constant inlet temperature in the turbine ensuring a stable power output. The overall plant thermal efficiency is written as a combination of the thermal efficiencies of the involved subsystems and the required heat exchangers. Numerical values of model input parameters are taken from a central tower installation recently developed near Seville, Spain. Real data for irradiance and external temperature are taken in hourly terms. The curves of several variables are obtained for representative days of all seasons: overall plant efficiency, solar subsystem efficiency, solar share, fuel conversion rate, and power output. The fuel consumption assuming natural gas fueling is calculated and the reduction in greenhouse emissions is discussed. The model can be applied to predict the daily and seasonal evolution of the performance of real installations in terms of a reduced set of parameters.</description><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Electric power generation</subject><subject>Gas turbine engines</subject><subject>Gas turbines</subject><subject>Global plant performance</subject><subject>Hybrid plants</subject><subject>Irradiance</subject><subject>Mathematical models</subject><subject>Power plants</subject><subject>Seasonal evolution</subject><subject>Thermodynamic model</subject><subject>Thermosolar gas-turbines</subject><subject>Variable solar irradiance</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PxCAQQInRxHX1L5gevbQCpVBumo1fiYkH9SqhMHXZtKVCV7P_XprV8yaTTGZ4M8BD6JLggmDCrzcFDMYPvR4KmuoC0wITeYQWpBYyp5SKY7RIHZ7XErNTdBbjBmNcVpgv0Mcr6OgH3WXTGkLv7W7QvTPZGMA6Mzk_ZL6dz7IRQutDusXA3NLZetcEZ7PoOx2yTx3zaRsaNyTS_0DIxk4P0zk6aXUX4eIvL9H7_d3b6jF_fnl4Wt0-54ZRPuWstNKastEgqsYwyyvQjdQ8BROsETyVJQNmKddcWFvxVpKaSq4l0w2tyyW62u8dg__aQpxU76KBLr0B_DYqUhOOuRSEHUaFxFKUZcUTyveoCT7GAK0ag-t12CmC1exebdS_ezW7V5iqZDoN3uwHIf3520FQ0bhEJqcBzKSsd4dW_ALDq5I1</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Santos, M.J.</creator><creator>Merchán, R.P.</creator><creator>Medina, A.</creator><creator>Calvo Hernández, A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160501</creationdate><title>Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant</title><author>Santos, M.J. ; Merchán, R.P. ; Medina, A. ; Calvo Hernández, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-43d9dc3bae75bc4d65eab9a69a6474b76eab34e4d26a67dd56f918296a94ab283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Electric power generation</topic><topic>Gas turbine engines</topic><topic>Gas turbines</topic><topic>Global plant performance</topic><topic>Hybrid plants</topic><topic>Irradiance</topic><topic>Mathematical models</topic><topic>Power plants</topic><topic>Seasonal evolution</topic><topic>Thermodynamic model</topic><topic>Thermosolar gas-turbines</topic><topic>Variable solar irradiance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, M.J.</creatorcontrib><creatorcontrib>Merchán, R.P.</creatorcontrib><creatorcontrib>Medina, A.</creatorcontrib><creatorcontrib>Calvo Hernández, A.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, M.J.</au><au>Merchán, R.P.</au><au>Medina, A.</au><au>Calvo Hernández, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant</atitle><jtitle>Energy conversion and management</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>115</volume><spage>89</spage><epage>102</epage><pages>89-102</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>[Display omitted] •A thermodynamic model for a solar hybrid gas turbine power plant is presented.•Variable conditions for solar irradiance and ambient temperature are considered.•Hybridization intends to get a stable power, independent of solar irradiance.•Numerical parameters are taken from an experimental plant in Spain.•Efficiency in hourly basis for days representative of each season is presented. An entirely thermodynamic model is developed for predicting the performance records of a solar hybrid gas turbine power plant with variable irradiance and ambient temperature conditions. The model considers a serial solar hybridization in those periods when solar irradiance is high enough. A combustion chamber allows to maintain an approximately constant inlet temperature in the turbine ensuring a stable power output. The overall plant thermal efficiency is written as a combination of the thermal efficiencies of the involved subsystems and the required heat exchangers. Numerical values of model input parameters are taken from a central tower installation recently developed near Seville, Spain. Real data for irradiance and external temperature are taken in hourly terms. The curves of several variables are obtained for representative days of all seasons: overall plant efficiency, solar subsystem efficiency, solar share, fuel conversion rate, and power output. The fuel consumption assuming natural gas fueling is calculated and the reduction in greenhouse emissions is discussed. The model can be applied to predict the daily and seasonal evolution of the performance of real installations in terms of a reduced set of parameters.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2016.02.019</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2016-05, Vol.115, p.89-102
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_miscellaneous_1816069714
source Elsevier ScienceDirect Journals
subjects Computational efficiency
Computing time
Electric power generation
Gas turbine engines
Gas turbines
Global plant performance
Hybrid plants
Irradiance
Mathematical models
Power plants
Seasonal evolution
Thermodynamic model
Thermosolar gas-turbines
Variable solar irradiance
title Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20thermodynamic%20prediction%20of%20the%20performance%20of%20a%20hybrid%20solar%20gas-turbine%20power%20plant&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Santos,%20M.J.&rft.date=2016-05-01&rft.volume=115&rft.spage=89&rft.epage=102&rft.pages=89-102&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2016.02.019&rft_dat=%3Cproquest_cross%3E1790973356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790973356&rft_id=info:pmid/&rft_els_id=S0196890416300437&rfr_iscdi=true