Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection

We demonstrate an algorithm, relevant to tomography sensor systems, to obtain images from the parallel reconstruction of essentially localized elements at different scales. This is achieved by combining methodology to reconstruct images from limited and/or truncated data, with the time-frequency cap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2016-06, Vol.16 (12), p.4839-4846
Hauptverfasser: Guevara Escobedo, Jorge, Ozanyan, Krikor B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4846
container_issue 12
container_start_page 4839
container_title IEEE sensors journal
container_volume 16
creator Guevara Escobedo, Jorge
Ozanyan, Krikor B.
description We demonstrate an algorithm, relevant to tomography sensor systems, to obtain images from the parallel reconstruction of essentially localized elements at different scales. This is achieved by combining methodology to reconstruct images from limited and/or truncated data, with the time-frequency capabilities of the wavelet transform. Multiscale, as well as time-frequency, localization properties of the separable two-dimensional wavelet transform are exploited as an approach for faster reconstruction. The speedup is realized not only by reducing the computation load on a single processor, but also by achieving the parallel reconstruction of several tiled blocks. With tiled-block image reconstruction by wavelet-based, parallel filtered back-projection (FBP), we measure more than 36 times gain in speed, compared with standard FBP.
doi_str_mv 10.1109/JSEN.2016.2546182
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816068174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7439744</ieee_id><sourcerecordid>4065567181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-88a9bbe590fcc7825235feda98e2c7ecc4af9cb10f1db72febdf63517035db2f3</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhisEEuPjByAulbhwICNumyY5smnjQxMgYIJblKYO6patI2mR9u_p2MSBky35eW3riaIzoH0AKq8fXkeP_YRC3k9YloNI9qIeMCYI8Ezsb_qUkizlH4fRUQgzSkFyxnvR9K1yWJKBq808vl_oT4xf0NTL0PjWNFW9jIt1_K6_0WFD4oEOWF7Fz9pr59CRceUa9Fh2AzMnz76e4W_oJDqw2gU83dXjaDoevQ3vyOTp9n54MyEmzWVDhNCyKJBJao3hImFJyiyWWgpMDEdjMm2lKYBaKAueWCxKm6cMOE1ZWSQ2PY4ut3tXvv5qMTRqUQWDzukl1m1QICCnuegcdOjFP3RWt37ZfaeAS8qBCSo7CraU8XUIHq1a-Wqh_VoBVRvRaiNabUSrneguc77NVIj4x3cnJc-y9AeOHXnD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790715809</pqid></control><display><type>article</type><title>Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection</title><source>IEEE Electronic Library (IEL)</source><creator>Guevara Escobedo, Jorge ; Ozanyan, Krikor B.</creator><creatorcontrib>Guevara Escobedo, Jorge ; Ozanyan, Krikor B.</creatorcontrib><description>We demonstrate an algorithm, relevant to tomography sensor systems, to obtain images from the parallel reconstruction of essentially localized elements at different scales. This is achieved by combining methodology to reconstruct images from limited and/or truncated data, with the time-frequency capabilities of the wavelet transform. Multiscale, as well as time-frequency, localization properties of the separable two-dimensional wavelet transform are exploited as an approach for faster reconstruction. The speedup is realized not only by reducing the computation load on a single processor, but also by achieving the parallel reconstruction of several tiled blocks. With tiled-block image reconstruction by wavelet-based, parallel filtered back-projection (FBP), we measure more than 36 times gain in speed, compared with standard FBP.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2016.2546182</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>computed tomography ; data processing algorithms ; Filtering ; Gain ; Image reconstruction ; Microprocessors ; parallel processing ; Reconstruction ; Sensors ; Time-frequency analysis ; Tomography ; wavelet transform ; Wavelet transforms</subject><ispartof>IEEE sensors journal, 2016-06, Vol.16 (12), p.4839-4846</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-88a9bbe590fcc7825235feda98e2c7ecc4af9cb10f1db72febdf63517035db2f3</citedby><cites>FETCH-LOGICAL-c369t-88a9bbe590fcc7825235feda98e2c7ecc4af9cb10f1db72febdf63517035db2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7439744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7439744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guevara Escobedo, Jorge</creatorcontrib><creatorcontrib>Ozanyan, Krikor B.</creatorcontrib><title>Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>We demonstrate an algorithm, relevant to tomography sensor systems, to obtain images from the parallel reconstruction of essentially localized elements at different scales. This is achieved by combining methodology to reconstruct images from limited and/or truncated data, with the time-frequency capabilities of the wavelet transform. Multiscale, as well as time-frequency, localization properties of the separable two-dimensional wavelet transform are exploited as an approach for faster reconstruction. The speedup is realized not only by reducing the computation load on a single processor, but also by achieving the parallel reconstruction of several tiled blocks. With tiled-block image reconstruction by wavelet-based, parallel filtered back-projection (FBP), we measure more than 36 times gain in speed, compared with standard FBP.</description><subject>computed tomography</subject><subject>data processing algorithms</subject><subject>Filtering</subject><subject>Gain</subject><subject>Image reconstruction</subject><subject>Microprocessors</subject><subject>parallel processing</subject><subject>Reconstruction</subject><subject>Sensors</subject><subject>Time-frequency analysis</subject><subject>Tomography</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwzAMhisEEuPjByAulbhwICNumyY5smnjQxMgYIJblKYO6patI2mR9u_p2MSBky35eW3riaIzoH0AKq8fXkeP_YRC3k9YloNI9qIeMCYI8Ezsb_qUkizlH4fRUQgzSkFyxnvR9K1yWJKBq808vl_oT4xf0NTL0PjWNFW9jIt1_K6_0WFD4oEOWF7Fz9pr59CRceUa9Fh2AzMnz76e4W_oJDqw2gU83dXjaDoevQ3vyOTp9n54MyEmzWVDhNCyKJBJao3hImFJyiyWWgpMDEdjMm2lKYBaKAueWCxKm6cMOE1ZWSQ2PY4ut3tXvv5qMTRqUQWDzukl1m1QICCnuegcdOjFP3RWt37ZfaeAS8qBCSo7CraU8XUIHq1a-Wqh_VoBVRvRaiNabUSrneguc77NVIj4x3cnJc-y9AeOHXnD</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Guevara Escobedo, Jorge</creator><creator>Ozanyan, Krikor B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160615</creationdate><title>Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection</title><author>Guevara Escobedo, Jorge ; Ozanyan, Krikor B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-88a9bbe590fcc7825235feda98e2c7ecc4af9cb10f1db72febdf63517035db2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>computed tomography</topic><topic>data processing algorithms</topic><topic>Filtering</topic><topic>Gain</topic><topic>Image reconstruction</topic><topic>Microprocessors</topic><topic>parallel processing</topic><topic>Reconstruction</topic><topic>Sensors</topic><topic>Time-frequency analysis</topic><topic>Tomography</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guevara Escobedo, Jorge</creatorcontrib><creatorcontrib>Ozanyan, Krikor B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guevara Escobedo, Jorge</au><au>Ozanyan, Krikor B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2016-06-15</date><risdate>2016</risdate><volume>16</volume><issue>12</issue><spage>4839</spage><epage>4846</epage><pages>4839-4846</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>We demonstrate an algorithm, relevant to tomography sensor systems, to obtain images from the parallel reconstruction of essentially localized elements at different scales. This is achieved by combining methodology to reconstruct images from limited and/or truncated data, with the time-frequency capabilities of the wavelet transform. Multiscale, as well as time-frequency, localization properties of the separable two-dimensional wavelet transform are exploited as an approach for faster reconstruction. The speedup is realized not only by reducing the computation load on a single processor, but also by achieving the parallel reconstruction of several tiled blocks. With tiled-block image reconstruction by wavelet-based, parallel filtered back-projection (FBP), we measure more than 36 times gain in speed, compared with standard FBP.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2016.2546182</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2016-06, Vol.16 (12), p.4839-4846
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_miscellaneous_1816068174
source IEEE Electronic Library (IEL)
subjects computed tomography
data processing algorithms
Filtering
Gain
Image reconstruction
Microprocessors
parallel processing
Reconstruction
Sensors
Time-frequency analysis
Tomography
wavelet transform
Wavelet transforms
title Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tiled-Block%20Image%20Reconstruction%20by%20Wavelet-%20Based,%20Parallel-Filtered%20Back-Projection&rft.jtitle=IEEE%20sensors%20journal&rft.au=Guevara%20Escobedo,%20Jorge&rft.date=2016-06-15&rft.volume=16&rft.issue=12&rft.spage=4839&rft.epage=4846&rft.pages=4839-4846&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2016.2546182&rft_dat=%3Cproquest_RIE%3E4065567181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790715809&rft_id=info:pmid/&rft_ieee_id=7439744&rfr_iscdi=true