Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection
We demonstrate an algorithm, relevant to tomography sensor systems, to obtain images from the parallel reconstruction of essentially localized elements at different scales. This is achieved by combining methodology to reconstruct images from limited and/or truncated data, with the time-frequency cap...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2016-06, Vol.16 (12), p.4839-4846 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4846 |
---|---|
container_issue | 12 |
container_start_page | 4839 |
container_title | IEEE sensors journal |
container_volume | 16 |
creator | Guevara Escobedo, Jorge Ozanyan, Krikor B. |
description | We demonstrate an algorithm, relevant to tomography sensor systems, to obtain images from the parallel reconstruction of essentially localized elements at different scales. This is achieved by combining methodology to reconstruct images from limited and/or truncated data, with the time-frequency capabilities of the wavelet transform. Multiscale, as well as time-frequency, localization properties of the separable two-dimensional wavelet transform are exploited as an approach for faster reconstruction. The speedup is realized not only by reducing the computation load on a single processor, but also by achieving the parallel reconstruction of several tiled blocks. With tiled-block image reconstruction by wavelet-based, parallel filtered back-projection (FBP), we measure more than 36 times gain in speed, compared with standard FBP. |
doi_str_mv | 10.1109/JSEN.2016.2546182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816068174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7439744</ieee_id><sourcerecordid>4065567181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-88a9bbe590fcc7825235feda98e2c7ecc4af9cb10f1db72febdf63517035db2f3</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhisEEuPjByAulbhwICNumyY5smnjQxMgYIJblKYO6patI2mR9u_p2MSBky35eW3riaIzoH0AKq8fXkeP_YRC3k9YloNI9qIeMCYI8Ezsb_qUkizlH4fRUQgzSkFyxnvR9K1yWJKBq808vl_oT4xf0NTL0PjWNFW9jIt1_K6_0WFD4oEOWF7Fz9pr59CRceUa9Fh2AzMnz76e4W_oJDqw2gU83dXjaDoevQ3vyOTp9n54MyEmzWVDhNCyKJBJao3hImFJyiyWWgpMDEdjMm2lKYBaKAueWCxKm6cMOE1ZWSQ2PY4ut3tXvv5qMTRqUQWDzukl1m1QICCnuegcdOjFP3RWt37ZfaeAS8qBCSo7CraU8XUIHq1a-Wqh_VoBVRvRaiNabUSrneguc77NVIj4x3cnJc-y9AeOHXnD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790715809</pqid></control><display><type>article</type><title>Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection</title><source>IEEE Electronic Library (IEL)</source><creator>Guevara Escobedo, Jorge ; Ozanyan, Krikor B.</creator><creatorcontrib>Guevara Escobedo, Jorge ; Ozanyan, Krikor B.</creatorcontrib><description>We demonstrate an algorithm, relevant to tomography sensor systems, to obtain images from the parallel reconstruction of essentially localized elements at different scales. This is achieved by combining methodology to reconstruct images from limited and/or truncated data, with the time-frequency capabilities of the wavelet transform. Multiscale, as well as time-frequency, localization properties of the separable two-dimensional wavelet transform are exploited as an approach for faster reconstruction. The speedup is realized not only by reducing the computation load on a single processor, but also by achieving the parallel reconstruction of several tiled blocks. With tiled-block image reconstruction by wavelet-based, parallel filtered back-projection (FBP), we measure more than 36 times gain in speed, compared with standard FBP.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2016.2546182</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>computed tomography ; data processing algorithms ; Filtering ; Gain ; Image reconstruction ; Microprocessors ; parallel processing ; Reconstruction ; Sensors ; Time-frequency analysis ; Tomography ; wavelet transform ; Wavelet transforms</subject><ispartof>IEEE sensors journal, 2016-06, Vol.16 (12), p.4839-4846</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-88a9bbe590fcc7825235feda98e2c7ecc4af9cb10f1db72febdf63517035db2f3</citedby><cites>FETCH-LOGICAL-c369t-88a9bbe590fcc7825235feda98e2c7ecc4af9cb10f1db72febdf63517035db2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7439744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7439744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guevara Escobedo, Jorge</creatorcontrib><creatorcontrib>Ozanyan, Krikor B.</creatorcontrib><title>Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>We demonstrate an algorithm, relevant to tomography sensor systems, to obtain images from the parallel reconstruction of essentially localized elements at different scales. This is achieved by combining methodology to reconstruct images from limited and/or truncated data, with the time-frequency capabilities of the wavelet transform. Multiscale, as well as time-frequency, localization properties of the separable two-dimensional wavelet transform are exploited as an approach for faster reconstruction. The speedup is realized not only by reducing the computation load on a single processor, but also by achieving the parallel reconstruction of several tiled blocks. With tiled-block image reconstruction by wavelet-based, parallel filtered back-projection (FBP), we measure more than 36 times gain in speed, compared with standard FBP.</description><subject>computed tomography</subject><subject>data processing algorithms</subject><subject>Filtering</subject><subject>Gain</subject><subject>Image reconstruction</subject><subject>Microprocessors</subject><subject>parallel processing</subject><subject>Reconstruction</subject><subject>Sensors</subject><subject>Time-frequency analysis</subject><subject>Tomography</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwzAMhisEEuPjByAulbhwICNumyY5smnjQxMgYIJblKYO6patI2mR9u_p2MSBky35eW3riaIzoH0AKq8fXkeP_YRC3k9YloNI9qIeMCYI8Ezsb_qUkizlH4fRUQgzSkFyxnvR9K1yWJKBq808vl_oT4xf0NTL0PjWNFW9jIt1_K6_0WFD4oEOWF7Fz9pr59CRceUa9Fh2AzMnz76e4W_oJDqw2gU83dXjaDoevQ3vyOTp9n54MyEmzWVDhNCyKJBJao3hImFJyiyWWgpMDEdjMm2lKYBaKAueWCxKm6cMOE1ZWSQ2PY4ut3tXvv5qMTRqUQWDzukl1m1QICCnuegcdOjFP3RWt37ZfaeAS8qBCSo7CraU8XUIHq1a-Wqh_VoBVRvRaiNabUSrneguc77NVIj4x3cnJc-y9AeOHXnD</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Guevara Escobedo, Jorge</creator><creator>Ozanyan, Krikor B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160615</creationdate><title>Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection</title><author>Guevara Escobedo, Jorge ; Ozanyan, Krikor B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-88a9bbe590fcc7825235feda98e2c7ecc4af9cb10f1db72febdf63517035db2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>computed tomography</topic><topic>data processing algorithms</topic><topic>Filtering</topic><topic>Gain</topic><topic>Image reconstruction</topic><topic>Microprocessors</topic><topic>parallel processing</topic><topic>Reconstruction</topic><topic>Sensors</topic><topic>Time-frequency analysis</topic><topic>Tomography</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guevara Escobedo, Jorge</creatorcontrib><creatorcontrib>Ozanyan, Krikor B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guevara Escobedo, Jorge</au><au>Ozanyan, Krikor B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2016-06-15</date><risdate>2016</risdate><volume>16</volume><issue>12</issue><spage>4839</spage><epage>4846</epage><pages>4839-4846</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>We demonstrate an algorithm, relevant to tomography sensor systems, to obtain images from the parallel reconstruction of essentially localized elements at different scales. This is achieved by combining methodology to reconstruct images from limited and/or truncated data, with the time-frequency capabilities of the wavelet transform. Multiscale, as well as time-frequency, localization properties of the separable two-dimensional wavelet transform are exploited as an approach for faster reconstruction. The speedup is realized not only by reducing the computation load on a single processor, but also by achieving the parallel reconstruction of several tiled blocks. With tiled-block image reconstruction by wavelet-based, parallel filtered back-projection (FBP), we measure more than 36 times gain in speed, compared with standard FBP.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2016.2546182</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2016-06, Vol.16 (12), p.4839-4846 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816068174 |
source | IEEE Electronic Library (IEL) |
subjects | computed tomography data processing algorithms Filtering Gain Image reconstruction Microprocessors parallel processing Reconstruction Sensors Time-frequency analysis Tomography wavelet transform Wavelet transforms |
title | Tiled-Block Image Reconstruction by Wavelet- Based, Parallel-Filtered Back-Projection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tiled-Block%20Image%20Reconstruction%20by%20Wavelet-%20Based,%20Parallel-Filtered%20Back-Projection&rft.jtitle=IEEE%20sensors%20journal&rft.au=Guevara%20Escobedo,%20Jorge&rft.date=2016-06-15&rft.volume=16&rft.issue=12&rft.spage=4839&rft.epage=4846&rft.pages=4839-4846&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2016.2546182&rft_dat=%3Cproquest_RIE%3E4065567181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790715809&rft_id=info:pmid/&rft_ieee_id=7439744&rfr_iscdi=true |