Mechanical and Thermal Properties of Central Former Material for High-Current Superconducting Cables

Ongoing projects to realize high-current superconducting cables for transport or magnet applications need to incorporate a high number of coated conductor tapes. Several design layouts published, such as conductor-on-round-core cable, stacks, or Roebel-Rutherford, can achieve this. Design layouts pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2016-06, Vol.26 (4), p.1-4
Hauptverfasser: Weiss, K.-P, Bagrets, N., Sas, J., Jung, A., Schlachter, S. I., della Corte, A., Celentano, G., Kvackaj, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 4
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 26
creator Weiss, K.-P
Bagrets, N.
Sas, J.
Jung, A.
Schlachter, S. I.
della Corte, A.
Celentano, G.
Kvackaj, T.
description Ongoing projects to realize high-current superconducting cables for transport or magnet applications need to incorporate a high number of coated conductor tapes. Several design layouts published, such as conductor-on-round-core cable, stacks, or Roebel-Rutherford, can achieve this. Design layouts proposed by the research institutes ENEA and KIT use a central former having grooves along the length where stacks of tapes or Roebel strands can be embedded. The former material is a substantial fraction of the cable cross section influencing the overall performance of the cable. In this work, materials used as the central former are investigated after severe plastic deformation, using equal channel angular pressing (ECAP) and equal channel angular rolling (ECAR) processes. Applying these methods allows producing continuously long-length profiles. Materials under investigation are aluminum alloy EN AW 6063 and oxygen-free high-conductivity copper. The influences of substructural characteristic obtained by ECAP and ECAR technology on mechanical properties, as well as thermal and electrical conductivity, at operational cryogenic temperatures, at 77 K and 4.2 K, are observed.
doi_str_mv 10.1109/TASC.2016.2539101
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816067538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7457353</ieee_id><sourcerecordid>4047268401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6079403227af19a11dd54007175fd67e48559f077bcdc2e20a67acc4669361e33</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoOH_8AeKl4MVLZ17SJO1xFOeEDYXNc8jS162ja2bSHvzvzdjw4On94PN9PD6EPAAdA9DiZTVZlmNGQY6Z4AVQuCAjECJPmQBxGXsqIM0Z49fkJoQdpZDlmRiRaoF2a7rGmjYxXZWstuj3sf_07oC-bzAkrk5K7Hoft1Pn9-iThenRN3GunU9mzWabloP3kUmWQ0xZ11WD7Ztuk5Rm3WK4I1e1aQPen-st-Zq-rspZOv94ey8n89RyJvtUUlVklDOmTA2FAagqkVGqQIm6kgqzXIiipkqtbWUZMmqkMtZmUhZcAnJ-S55Pdw_efQ8Yer1vgsW2NR26IWjIQVKpBM8j-vQP3bnBd_E7DSpXjHIBMlJwoqx3IXis9cE3e-N_NFB99K6P3vXRuz57j5nHU6ZBxD9eZUJxwfkvpIl9Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787203516</pqid></control><display><type>article</type><title>Mechanical and Thermal Properties of Central Former Material for High-Current Superconducting Cables</title><source>IEEE Electronic Library (IEL)</source><creator>Weiss, K.-P ; Bagrets, N. ; Sas, J. ; Jung, A. ; Schlachter, S. I. ; della Corte, A. ; Celentano, G. ; Kvackaj, T.</creator><creatorcontrib>Weiss, K.-P ; Bagrets, N. ; Sas, J. ; Jung, A. ; Schlachter, S. I. ; della Corte, A. ; Celentano, G. ; Kvackaj, T.</creatorcontrib><description>Ongoing projects to realize high-current superconducting cables for transport or magnet applications need to incorporate a high number of coated conductor tapes. Several design layouts published, such as conductor-on-round-core cable, stacks, or Roebel-Rutherford, can achieve this. Design layouts proposed by the research institutes ENEA and KIT use a central former having grooves along the length where stacks of tapes or Roebel strands can be embedded. The former material is a substantial fraction of the cable cross section influencing the overall performance of the cable. In this work, materials used as the central former are investigated after severe plastic deformation, using equal channel angular pressing (ECAP) and equal channel angular rolling (ECAR) processes. Applying these methods allows producing continuously long-length profiles. Materials under investigation are aluminum alloy EN AW 6063 and oxygen-free high-conductivity copper. The influences of substructural characteristic obtained by ECAP and ECAR technology on mechanical properties, as well as thermal and electrical conductivity, at operational cryogenic temperatures, at 77 K and 4.2 K, are observed.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2016.2539101</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum base alloys ; Cables ; Conductivity ; Conductors (devices) ; Equal channel angular pressing ; HTS cable ; Mechanical factors ; mechanical test ; Metals ; resistivity ; Stacks ; structural material ; Superconducting cables ; Superconducting tapes ; Superconductivity ; Temperature measurement ; Thermal conductivity ; Thermal expansion ; Thermal properties</subject><ispartof>IEEE transactions on applied superconductivity, 2016-06, Vol.26 (4), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-6079403227af19a11dd54007175fd67e48559f077bcdc2e20a67acc4669361e33</citedby><cites>FETCH-LOGICAL-c326t-6079403227af19a11dd54007175fd67e48559f077bcdc2e20a67acc4669361e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7457353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7457353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Weiss, K.-P</creatorcontrib><creatorcontrib>Bagrets, N.</creatorcontrib><creatorcontrib>Sas, J.</creatorcontrib><creatorcontrib>Jung, A.</creatorcontrib><creatorcontrib>Schlachter, S. I.</creatorcontrib><creatorcontrib>della Corte, A.</creatorcontrib><creatorcontrib>Celentano, G.</creatorcontrib><creatorcontrib>Kvackaj, T.</creatorcontrib><title>Mechanical and Thermal Properties of Central Former Material for High-Current Superconducting Cables</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Ongoing projects to realize high-current superconducting cables for transport or magnet applications need to incorporate a high number of coated conductor tapes. Several design layouts published, such as conductor-on-round-core cable, stacks, or Roebel-Rutherford, can achieve this. Design layouts proposed by the research institutes ENEA and KIT use a central former having grooves along the length where stacks of tapes or Roebel strands can be embedded. The former material is a substantial fraction of the cable cross section influencing the overall performance of the cable. In this work, materials used as the central former are investigated after severe plastic deformation, using equal channel angular pressing (ECAP) and equal channel angular rolling (ECAR) processes. Applying these methods allows producing continuously long-length profiles. Materials under investigation are aluminum alloy EN AW 6063 and oxygen-free high-conductivity copper. The influences of substructural characteristic obtained by ECAP and ECAR technology on mechanical properties, as well as thermal and electrical conductivity, at operational cryogenic temperatures, at 77 K and 4.2 K, are observed.</description><subject>Aluminum base alloys</subject><subject>Cables</subject><subject>Conductivity</subject><subject>Conductors (devices)</subject><subject>Equal channel angular pressing</subject><subject>HTS cable</subject><subject>Mechanical factors</subject><subject>mechanical test</subject><subject>Metals</subject><subject>resistivity</subject><subject>Stacks</subject><subject>structural material</subject><subject>Superconducting cables</subject><subject>Superconducting tapes</subject><subject>Superconductivity</subject><subject>Temperature measurement</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermal properties</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4MoOH_8AeKl4MVLZ17SJO1xFOeEDYXNc8jS162ja2bSHvzvzdjw4On94PN9PD6EPAAdA9DiZTVZlmNGQY6Z4AVQuCAjECJPmQBxGXsqIM0Z49fkJoQdpZDlmRiRaoF2a7rGmjYxXZWstuj3sf_07oC-bzAkrk5K7Hoft1Pn9-iThenRN3GunU9mzWabloP3kUmWQ0xZ11WD7Ztuk5Rm3WK4I1e1aQPen-st-Zq-rspZOv94ey8n89RyJvtUUlVklDOmTA2FAagqkVGqQIm6kgqzXIiipkqtbWUZMmqkMtZmUhZcAnJ-S55Pdw_efQ8Yer1vgsW2NR26IWjIQVKpBM8j-vQP3bnBd_E7DSpXjHIBMlJwoqx3IXis9cE3e-N_NFB99K6P3vXRuz57j5nHU6ZBxD9eZUJxwfkvpIl9Vg</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Weiss, K.-P</creator><creator>Bagrets, N.</creator><creator>Sas, J.</creator><creator>Jung, A.</creator><creator>Schlachter, S. I.</creator><creator>della Corte, A.</creator><creator>Celentano, G.</creator><creator>Kvackaj, T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20160601</creationdate><title>Mechanical and Thermal Properties of Central Former Material for High-Current Superconducting Cables</title><author>Weiss, K.-P ; Bagrets, N. ; Sas, J. ; Jung, A. ; Schlachter, S. I. ; della Corte, A. ; Celentano, G. ; Kvackaj, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6079403227af19a11dd54007175fd67e48559f077bcdc2e20a67acc4669361e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum base alloys</topic><topic>Cables</topic><topic>Conductivity</topic><topic>Conductors (devices)</topic><topic>Equal channel angular pressing</topic><topic>HTS cable</topic><topic>Mechanical factors</topic><topic>mechanical test</topic><topic>Metals</topic><topic>resistivity</topic><topic>Stacks</topic><topic>structural material</topic><topic>Superconducting cables</topic><topic>Superconducting tapes</topic><topic>Superconductivity</topic><topic>Temperature measurement</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss, K.-P</creatorcontrib><creatorcontrib>Bagrets, N.</creatorcontrib><creatorcontrib>Sas, J.</creatorcontrib><creatorcontrib>Jung, A.</creatorcontrib><creatorcontrib>Schlachter, S. I.</creatorcontrib><creatorcontrib>della Corte, A.</creatorcontrib><creatorcontrib>Celentano, G.</creatorcontrib><creatorcontrib>Kvackaj, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weiss, K.-P</au><au>Bagrets, N.</au><au>Sas, J.</au><au>Jung, A.</au><au>Schlachter, S. I.</au><au>della Corte, A.</au><au>Celentano, G.</au><au>Kvackaj, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and Thermal Properties of Central Former Material for High-Current Superconducting Cables</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>26</volume><issue>4</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Ongoing projects to realize high-current superconducting cables for transport or magnet applications need to incorporate a high number of coated conductor tapes. Several design layouts published, such as conductor-on-round-core cable, stacks, or Roebel-Rutherford, can achieve this. Design layouts proposed by the research institutes ENEA and KIT use a central former having grooves along the length where stacks of tapes or Roebel strands can be embedded. The former material is a substantial fraction of the cable cross section influencing the overall performance of the cable. In this work, materials used as the central former are investigated after severe plastic deformation, using equal channel angular pressing (ECAP) and equal channel angular rolling (ECAR) processes. Applying these methods allows producing continuously long-length profiles. Materials under investigation are aluminum alloy EN AW 6063 and oxygen-free high-conductivity copper. The influences of substructural characteristic obtained by ECAP and ECAR technology on mechanical properties, as well as thermal and electrical conductivity, at operational cryogenic temperatures, at 77 K and 4.2 K, are observed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2016.2539101</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2016-06, Vol.26 (4), p.1-4
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_1816067538
source IEEE Electronic Library (IEL)
subjects Aluminum base alloys
Cables
Conductivity
Conductors (devices)
Equal channel angular pressing
HTS cable
Mechanical factors
mechanical test
Metals
resistivity
Stacks
structural material
Superconducting cables
Superconducting tapes
Superconductivity
Temperature measurement
Thermal conductivity
Thermal expansion
Thermal properties
title Mechanical and Thermal Properties of Central Former Material for High-Current Superconducting Cables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20Thermal%20Properties%20of%20Central%20Former%20Material%20for%20High-Current%20Superconducting%20Cables&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Weiss,%20K.-P&rft.date=2016-06-01&rft.volume=26&rft.issue=4&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2016.2539101&rft_dat=%3Cproquest_RIE%3E4047268401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787203516&rft_id=info:pmid/&rft_ieee_id=7457353&rfr_iscdi=true