Numerical and experimental study of the drying of bi-component droplets under various drying conditions

•Mannitol–water single droplet drying is studied in an acoustic levitator.•Numerical model for solid layer formation and growth including mannitol properties.•Design of experiments with respect to initial droplet diameter, mannitol mass fraction and drying temperature.•Experimental and numerical res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2016-05, Vol.96, p.97-109
Hauptverfasser: Grosshans, Holger, Griesing, Matthias, Mönckedieck, Mathias, Hellwig, Thomas, Walther, Benjamin, Gopireddy, Srikanth R., Sedelmayer, Robert, Pauer, Werner, Moritz, Hans-Ulrich, Urbanetz, Nora A., Gutheil, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue
container_start_page 97
container_title International journal of heat and mass transfer
container_volume 96
creator Grosshans, Holger
Griesing, Matthias
Mönckedieck, Mathias
Hellwig, Thomas
Walther, Benjamin
Gopireddy, Srikanth R.
Sedelmayer, Robert
Pauer, Werner
Moritz, Hans-Ulrich
Urbanetz, Nora A.
Gutheil, Eva
description •Mannitol–water single droplet drying is studied in an acoustic levitator.•Numerical model for solid layer formation and growth including mannitol properties.•Design of experiments with respect to initial droplet diameter, mannitol mass fraction and drying temperature.•Experimental and numerical results agree favorably for final particle size, porosity and surface reduction.•Design of experiments provides parametric dependencies of both numerical and experimental results on initial parameters. This paper presents a combined experimental and numerical study of the evaporation and solid layer formation of single bi-component mannitol–water droplets in hot air. Experimentally, the process of droplet evaporation and drying is studied in a custom-built acoustic levitator. The experimental results are compared with numerical simulations of spherically symmetric bi-component droplets in an unsteady, one-dimensional configuration. The model includes evaporation and solid layer formation. This approach enables the comparison of the temporal variation of the droplet size and the porosity, which are related to the final particle sizes. The study is performed for various drying conditions and initial droplet sizes as well as compositions of the droplets. The objective of this paper is the derivation and validation of a suitable model to predict the properties of spray-dried mannitol particles, depending on their drying conditions. A design of experiments (DoE) is used to define suitable drying conditions and to analyze the results. The study includes initial droplet diameters varying from 350μm to 550μm and initial mannitol mass fractions in water droplets ranging from 5% to 15%. The surrounding air temperature is varied from 80°C to 120°C. Additionally, different relative humidity of the surrounding air between 1% and 7.5% is studied. Based on the DoE, correlations for results from both experiments and simulations including the temporal evolution of the droplet surface area and the final particle size are derived and discussed. Major influences are identified that dominate particle drying characteristics.
doi_str_mv 10.1016/j.ijheatmasstransfer.2015.12.062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816067235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001793101501087X</els_id><sourcerecordid>1816067235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-c739f11f3dc1910e6ecdb52713a28b533c72dc8f3bab11e8eb67150ae0a1efc73</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIlMI_5NhLgtdpXjdQxVMILnC2HHvTukrsYDsV_XtcFU5cOK1mdna0M4QsgGZAobzeZnq7QREG4X1wwvgOXcYoFBmwjJbshMygrpqUQd2ckhmlUKVNDvScXHi_PUC6LGdk_ToN6LQUfSKMSvBrjGhAEyLhw6T2ie2SsMFEub026wNqdSrtMFoTVZG2Y4_BJ5NR6JKdcNpO_lctrVE6aGv8JTnrRO_x6mfOycf93fvqMX15e3ha3b6kcrmEkMoqbzqALlcSGqBYolRtwSrIBavbIs9lxZSsu7wVLQDW2JYVFFQgFYBdvJ6TxdF3dPZzQh_4oL3EvhcG42McaihpWbG8iNKbo1Q6673Djo8xunB7DpQfOuZb_rdjfuiYA-Ox42jxfLTAGGmn49ZLjUai0g5l4Mrq_5t9A1emlRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816067235</pqid></control><display><type>article</type><title>Numerical and experimental study of the drying of bi-component droplets under various drying conditions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Grosshans, Holger ; Griesing, Matthias ; Mönckedieck, Mathias ; Hellwig, Thomas ; Walther, Benjamin ; Gopireddy, Srikanth R. ; Sedelmayer, Robert ; Pauer, Werner ; Moritz, Hans-Ulrich ; Urbanetz, Nora A. ; Gutheil, Eva</creator><creatorcontrib>Grosshans, Holger ; Griesing, Matthias ; Mönckedieck, Mathias ; Hellwig, Thomas ; Walther, Benjamin ; Gopireddy, Srikanth R. ; Sedelmayer, Robert ; Pauer, Werner ; Moritz, Hans-Ulrich ; Urbanetz, Nora A. ; Gutheil, Eva</creatorcontrib><description>•Mannitol–water single droplet drying is studied in an acoustic levitator.•Numerical model for solid layer formation and growth including mannitol properties.•Design of experiments with respect to initial droplet diameter, mannitol mass fraction and drying temperature.•Experimental and numerical results agree favorably for final particle size, porosity and surface reduction.•Design of experiments provides parametric dependencies of both numerical and experimental results on initial parameters. This paper presents a combined experimental and numerical study of the evaporation and solid layer formation of single bi-component mannitol–water droplets in hot air. Experimentally, the process of droplet evaporation and drying is studied in a custom-built acoustic levitator. The experimental results are compared with numerical simulations of spherically symmetric bi-component droplets in an unsteady, one-dimensional configuration. The model includes evaporation and solid layer formation. This approach enables the comparison of the temporal variation of the droplet size and the porosity, which are related to the final particle sizes. The study is performed for various drying conditions and initial droplet sizes as well as compositions of the droplets. The objective of this paper is the derivation and validation of a suitable model to predict the properties of spray-dried mannitol particles, depending on their drying conditions. A design of experiments (DoE) is used to define suitable drying conditions and to analyze the results. The study includes initial droplet diameters varying from 350μm to 550μm and initial mannitol mass fractions in water droplets ranging from 5% to 15%. The surrounding air temperature is varied from 80°C to 120°C. Additionally, different relative humidity of the surrounding air between 1% and 7.5% is studied. Based on the DoE, correlations for results from both experiments and simulations including the temporal evolution of the droplet surface area and the final particle size are derived and discussed. Major influences are identified that dominate particle drying characteristics.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2015.12.062</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Acoustic levitator ; Bi-component droplet drying ; Design of experiments (DoE) ; Droplets ; Drying ; Evaporation ; Formations ; Mannitol ; Mannitol–water droplets ; Mathematical models ; Numerical model ; Particle size ; Relative humidity</subject><ispartof>International journal of heat and mass transfer, 2016-05, Vol.96, p.97-109</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-c739f11f3dc1910e6ecdb52713a28b533c72dc8f3bab11e8eb67150ae0a1efc73</citedby><cites>FETCH-LOGICAL-c441t-c739f11f3dc1910e6ecdb52713a28b533c72dc8f3bab11e8eb67150ae0a1efc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001793101501087X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Grosshans, Holger</creatorcontrib><creatorcontrib>Griesing, Matthias</creatorcontrib><creatorcontrib>Mönckedieck, Mathias</creatorcontrib><creatorcontrib>Hellwig, Thomas</creatorcontrib><creatorcontrib>Walther, Benjamin</creatorcontrib><creatorcontrib>Gopireddy, Srikanth R.</creatorcontrib><creatorcontrib>Sedelmayer, Robert</creatorcontrib><creatorcontrib>Pauer, Werner</creatorcontrib><creatorcontrib>Moritz, Hans-Ulrich</creatorcontrib><creatorcontrib>Urbanetz, Nora A.</creatorcontrib><creatorcontrib>Gutheil, Eva</creatorcontrib><title>Numerical and experimental study of the drying of bi-component droplets under various drying conditions</title><title>International journal of heat and mass transfer</title><description>•Mannitol–water single droplet drying is studied in an acoustic levitator.•Numerical model for solid layer formation and growth including mannitol properties.•Design of experiments with respect to initial droplet diameter, mannitol mass fraction and drying temperature.•Experimental and numerical results agree favorably for final particle size, porosity and surface reduction.•Design of experiments provides parametric dependencies of both numerical and experimental results on initial parameters. This paper presents a combined experimental and numerical study of the evaporation and solid layer formation of single bi-component mannitol–water droplets in hot air. Experimentally, the process of droplet evaporation and drying is studied in a custom-built acoustic levitator. The experimental results are compared with numerical simulations of spherically symmetric bi-component droplets in an unsteady, one-dimensional configuration. The model includes evaporation and solid layer formation. This approach enables the comparison of the temporal variation of the droplet size and the porosity, which are related to the final particle sizes. The study is performed for various drying conditions and initial droplet sizes as well as compositions of the droplets. The objective of this paper is the derivation and validation of a suitable model to predict the properties of spray-dried mannitol particles, depending on their drying conditions. A design of experiments (DoE) is used to define suitable drying conditions and to analyze the results. The study includes initial droplet diameters varying from 350μm to 550μm and initial mannitol mass fractions in water droplets ranging from 5% to 15%. The surrounding air temperature is varied from 80°C to 120°C. Additionally, different relative humidity of the surrounding air between 1% and 7.5% is studied. Based on the DoE, correlations for results from both experiments and simulations including the temporal evolution of the droplet surface area and the final particle size are derived and discussed. Major influences are identified that dominate particle drying characteristics.</description><subject>Acoustic levitator</subject><subject>Bi-component droplet drying</subject><subject>Design of experiments (DoE)</subject><subject>Droplets</subject><subject>Drying</subject><subject>Evaporation</subject><subject>Formations</subject><subject>Mannitol</subject><subject>Mannitol–water droplets</subject><subject>Mathematical models</subject><subject>Numerical model</subject><subject>Particle size</subject><subject>Relative humidity</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUMtOwzAQtBBIlMI_5NhLgtdpXjdQxVMILnC2HHvTukrsYDsV_XtcFU5cOK1mdna0M4QsgGZAobzeZnq7QREG4X1wwvgOXcYoFBmwjJbshMygrpqUQd2ckhmlUKVNDvScXHi_PUC6LGdk_ToN6LQUfSKMSvBrjGhAEyLhw6T2ie2SsMFEub026wNqdSrtMFoTVZG2Y4_BJ5NR6JKdcNpO_lctrVE6aGv8JTnrRO_x6mfOycf93fvqMX15e3ha3b6kcrmEkMoqbzqALlcSGqBYolRtwSrIBavbIs9lxZSsu7wVLQDW2JYVFFQgFYBdvJ6TxdF3dPZzQh_4oL3EvhcG42McaihpWbG8iNKbo1Q6673Djo8xunB7DpQfOuZb_rdjfuiYA-Ox42jxfLTAGGmn49ZLjUai0g5l4Mrq_5t9A1emlRQ</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Grosshans, Holger</creator><creator>Griesing, Matthias</creator><creator>Mönckedieck, Mathias</creator><creator>Hellwig, Thomas</creator><creator>Walther, Benjamin</creator><creator>Gopireddy, Srikanth R.</creator><creator>Sedelmayer, Robert</creator><creator>Pauer, Werner</creator><creator>Moritz, Hans-Ulrich</creator><creator>Urbanetz, Nora A.</creator><creator>Gutheil, Eva</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201605</creationdate><title>Numerical and experimental study of the drying of bi-component droplets under various drying conditions</title><author>Grosshans, Holger ; Griesing, Matthias ; Mönckedieck, Mathias ; Hellwig, Thomas ; Walther, Benjamin ; Gopireddy, Srikanth R. ; Sedelmayer, Robert ; Pauer, Werner ; Moritz, Hans-Ulrich ; Urbanetz, Nora A. ; Gutheil, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-c739f11f3dc1910e6ecdb52713a28b533c72dc8f3bab11e8eb67150ae0a1efc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustic levitator</topic><topic>Bi-component droplet drying</topic><topic>Design of experiments (DoE)</topic><topic>Droplets</topic><topic>Drying</topic><topic>Evaporation</topic><topic>Formations</topic><topic>Mannitol</topic><topic>Mannitol–water droplets</topic><topic>Mathematical models</topic><topic>Numerical model</topic><topic>Particle size</topic><topic>Relative humidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grosshans, Holger</creatorcontrib><creatorcontrib>Griesing, Matthias</creatorcontrib><creatorcontrib>Mönckedieck, Mathias</creatorcontrib><creatorcontrib>Hellwig, Thomas</creatorcontrib><creatorcontrib>Walther, Benjamin</creatorcontrib><creatorcontrib>Gopireddy, Srikanth R.</creatorcontrib><creatorcontrib>Sedelmayer, Robert</creatorcontrib><creatorcontrib>Pauer, Werner</creatorcontrib><creatorcontrib>Moritz, Hans-Ulrich</creatorcontrib><creatorcontrib>Urbanetz, Nora A.</creatorcontrib><creatorcontrib>Gutheil, Eva</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosshans, Holger</au><au>Griesing, Matthias</au><au>Mönckedieck, Mathias</au><au>Hellwig, Thomas</au><au>Walther, Benjamin</au><au>Gopireddy, Srikanth R.</au><au>Sedelmayer, Robert</au><au>Pauer, Werner</au><au>Moritz, Hans-Ulrich</au><au>Urbanetz, Nora A.</au><au>Gutheil, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and experimental study of the drying of bi-component droplets under various drying conditions</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2016-05</date><risdate>2016</risdate><volume>96</volume><spage>97</spage><epage>109</epage><pages>97-109</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Mannitol–water single droplet drying is studied in an acoustic levitator.•Numerical model for solid layer formation and growth including mannitol properties.•Design of experiments with respect to initial droplet diameter, mannitol mass fraction and drying temperature.•Experimental and numerical results agree favorably for final particle size, porosity and surface reduction.•Design of experiments provides parametric dependencies of both numerical and experimental results on initial parameters. This paper presents a combined experimental and numerical study of the evaporation and solid layer formation of single bi-component mannitol–water droplets in hot air. Experimentally, the process of droplet evaporation and drying is studied in a custom-built acoustic levitator. The experimental results are compared with numerical simulations of spherically symmetric bi-component droplets in an unsteady, one-dimensional configuration. The model includes evaporation and solid layer formation. This approach enables the comparison of the temporal variation of the droplet size and the porosity, which are related to the final particle sizes. The study is performed for various drying conditions and initial droplet sizes as well as compositions of the droplets. The objective of this paper is the derivation and validation of a suitable model to predict the properties of spray-dried mannitol particles, depending on their drying conditions. A design of experiments (DoE) is used to define suitable drying conditions and to analyze the results. The study includes initial droplet diameters varying from 350μm to 550μm and initial mannitol mass fractions in water droplets ranging from 5% to 15%. The surrounding air temperature is varied from 80°C to 120°C. Additionally, different relative humidity of the surrounding air between 1% and 7.5% is studied. Based on the DoE, correlations for results from both experiments and simulations including the temporal evolution of the droplet surface area and the final particle size are derived and discussed. Major influences are identified that dominate particle drying characteristics.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2015.12.062</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2016-05, Vol.96, p.97-109
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1816067235
source Elsevier ScienceDirect Journals Complete
subjects Acoustic levitator
Bi-component droplet drying
Design of experiments (DoE)
Droplets
Drying
Evaporation
Formations
Mannitol
Mannitol–water droplets
Mathematical models
Numerical model
Particle size
Relative humidity
title Numerical and experimental study of the drying of bi-component droplets under various drying conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20experimental%20study%20of%20the%20drying%20of%20bi-component%20droplets%20under%20various%20drying%20conditions&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Grosshans,%20Holger&rft.date=2016-05&rft.volume=96&rft.spage=97&rft.epage=109&rft.pages=97-109&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2015.12.062&rft_dat=%3Cproquest_cross%3E1816067235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816067235&rft_id=info:pmid/&rft_els_id=S001793101501087X&rfr_iscdi=true