Numerical and experimental study of the drying of bi-component droplets under various drying conditions
•Mannitol–water single droplet drying is studied in an acoustic levitator.•Numerical model for solid layer formation and growth including mannitol properties.•Design of experiments with respect to initial droplet diameter, mannitol mass fraction and drying temperature.•Experimental and numerical res...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2016-05, Vol.96, p.97-109 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109 |
---|---|
container_issue | |
container_start_page | 97 |
container_title | International journal of heat and mass transfer |
container_volume | 96 |
creator | Grosshans, Holger Griesing, Matthias Mönckedieck, Mathias Hellwig, Thomas Walther, Benjamin Gopireddy, Srikanth R. Sedelmayer, Robert Pauer, Werner Moritz, Hans-Ulrich Urbanetz, Nora A. Gutheil, Eva |
description | •Mannitol–water single droplet drying is studied in an acoustic levitator.•Numerical model for solid layer formation and growth including mannitol properties.•Design of experiments with respect to initial droplet diameter, mannitol mass fraction and drying temperature.•Experimental and numerical results agree favorably for final particle size, porosity and surface reduction.•Design of experiments provides parametric dependencies of both numerical and experimental results on initial parameters.
This paper presents a combined experimental and numerical study of the evaporation and solid layer formation of single bi-component mannitol–water droplets in hot air. Experimentally, the process of droplet evaporation and drying is studied in a custom-built acoustic levitator. The experimental results are compared with numerical simulations of spherically symmetric bi-component droplets in an unsteady, one-dimensional configuration. The model includes evaporation and solid layer formation. This approach enables the comparison of the temporal variation of the droplet size and the porosity, which are related to the final particle sizes. The study is performed for various drying conditions and initial droplet sizes as well as compositions of the droplets. The objective of this paper is the derivation and validation of a suitable model to predict the properties of spray-dried mannitol particles, depending on their drying conditions. A design of experiments (DoE) is used to define suitable drying conditions and to analyze the results. The study includes initial droplet diameters varying from 350μm to 550μm and initial mannitol mass fractions in water droplets ranging from 5% to 15%. The surrounding air temperature is varied from 80°C to 120°C. Additionally, different relative humidity of the surrounding air between 1% and 7.5% is studied. Based on the DoE, correlations for results from both experiments and simulations including the temporal evolution of the droplet surface area and the final particle size are derived and discussed. Major influences are identified that dominate particle drying characteristics. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2015.12.062 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816067235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001793101501087X</els_id><sourcerecordid>1816067235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-c739f11f3dc1910e6ecdb52713a28b533c72dc8f3bab11e8eb67150ae0a1efc73</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIlMI_5NhLgtdpXjdQxVMILnC2HHvTukrsYDsV_XtcFU5cOK1mdna0M4QsgGZAobzeZnq7QREG4X1wwvgOXcYoFBmwjJbshMygrpqUQd2ckhmlUKVNDvScXHi_PUC6LGdk_ToN6LQUfSKMSvBrjGhAEyLhw6T2ie2SsMFEub026wNqdSrtMFoTVZG2Y4_BJ5NR6JKdcNpO_lctrVE6aGv8JTnrRO_x6mfOycf93fvqMX15e3ha3b6kcrmEkMoqbzqALlcSGqBYolRtwSrIBavbIs9lxZSsu7wVLQDW2JYVFFQgFYBdvJ6TxdF3dPZzQh_4oL3EvhcG42McaihpWbG8iNKbo1Q6673Djo8xunB7DpQfOuZb_rdjfuiYA-Ox42jxfLTAGGmn49ZLjUai0g5l4Mrq_5t9A1emlRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816067235</pqid></control><display><type>article</type><title>Numerical and experimental study of the drying of bi-component droplets under various drying conditions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Grosshans, Holger ; Griesing, Matthias ; Mönckedieck, Mathias ; Hellwig, Thomas ; Walther, Benjamin ; Gopireddy, Srikanth R. ; Sedelmayer, Robert ; Pauer, Werner ; Moritz, Hans-Ulrich ; Urbanetz, Nora A. ; Gutheil, Eva</creator><creatorcontrib>Grosshans, Holger ; Griesing, Matthias ; Mönckedieck, Mathias ; Hellwig, Thomas ; Walther, Benjamin ; Gopireddy, Srikanth R. ; Sedelmayer, Robert ; Pauer, Werner ; Moritz, Hans-Ulrich ; Urbanetz, Nora A. ; Gutheil, Eva</creatorcontrib><description>•Mannitol–water single droplet drying is studied in an acoustic levitator.•Numerical model for solid layer formation and growth including mannitol properties.•Design of experiments with respect to initial droplet diameter, mannitol mass fraction and drying temperature.•Experimental and numerical results agree favorably for final particle size, porosity and surface reduction.•Design of experiments provides parametric dependencies of both numerical and experimental results on initial parameters.
This paper presents a combined experimental and numerical study of the evaporation and solid layer formation of single bi-component mannitol–water droplets in hot air. Experimentally, the process of droplet evaporation and drying is studied in a custom-built acoustic levitator. The experimental results are compared with numerical simulations of spherically symmetric bi-component droplets in an unsteady, one-dimensional configuration. The model includes evaporation and solid layer formation. This approach enables the comparison of the temporal variation of the droplet size and the porosity, which are related to the final particle sizes. The study is performed for various drying conditions and initial droplet sizes as well as compositions of the droplets. The objective of this paper is the derivation and validation of a suitable model to predict the properties of spray-dried mannitol particles, depending on their drying conditions. A design of experiments (DoE) is used to define suitable drying conditions and to analyze the results. The study includes initial droplet diameters varying from 350μm to 550μm and initial mannitol mass fractions in water droplets ranging from 5% to 15%. The surrounding air temperature is varied from 80°C to 120°C. Additionally, different relative humidity of the surrounding air between 1% and 7.5% is studied. Based on the DoE, correlations for results from both experiments and simulations including the temporal evolution of the droplet surface area and the final particle size are derived and discussed. Major influences are identified that dominate particle drying characteristics.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2015.12.062</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Acoustic levitator ; Bi-component droplet drying ; Design of experiments (DoE) ; Droplets ; Drying ; Evaporation ; Formations ; Mannitol ; Mannitol–water droplets ; Mathematical models ; Numerical model ; Particle size ; Relative humidity</subject><ispartof>International journal of heat and mass transfer, 2016-05, Vol.96, p.97-109</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-c739f11f3dc1910e6ecdb52713a28b533c72dc8f3bab11e8eb67150ae0a1efc73</citedby><cites>FETCH-LOGICAL-c441t-c739f11f3dc1910e6ecdb52713a28b533c72dc8f3bab11e8eb67150ae0a1efc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001793101501087X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Grosshans, Holger</creatorcontrib><creatorcontrib>Griesing, Matthias</creatorcontrib><creatorcontrib>Mönckedieck, Mathias</creatorcontrib><creatorcontrib>Hellwig, Thomas</creatorcontrib><creatorcontrib>Walther, Benjamin</creatorcontrib><creatorcontrib>Gopireddy, Srikanth R.</creatorcontrib><creatorcontrib>Sedelmayer, Robert</creatorcontrib><creatorcontrib>Pauer, Werner</creatorcontrib><creatorcontrib>Moritz, Hans-Ulrich</creatorcontrib><creatorcontrib>Urbanetz, Nora A.</creatorcontrib><creatorcontrib>Gutheil, Eva</creatorcontrib><title>Numerical and experimental study of the drying of bi-component droplets under various drying conditions</title><title>International journal of heat and mass transfer</title><description>•Mannitol–water single droplet drying is studied in an acoustic levitator.•Numerical model for solid layer formation and growth including mannitol properties.•Design of experiments with respect to initial droplet diameter, mannitol mass fraction and drying temperature.•Experimental and numerical results agree favorably for final particle size, porosity and surface reduction.•Design of experiments provides parametric dependencies of both numerical and experimental results on initial parameters.
This paper presents a combined experimental and numerical study of the evaporation and solid layer formation of single bi-component mannitol–water droplets in hot air. Experimentally, the process of droplet evaporation and drying is studied in a custom-built acoustic levitator. The experimental results are compared with numerical simulations of spherically symmetric bi-component droplets in an unsteady, one-dimensional configuration. The model includes evaporation and solid layer formation. This approach enables the comparison of the temporal variation of the droplet size and the porosity, which are related to the final particle sizes. The study is performed for various drying conditions and initial droplet sizes as well as compositions of the droplets. The objective of this paper is the derivation and validation of a suitable model to predict the properties of spray-dried mannitol particles, depending on their drying conditions. A design of experiments (DoE) is used to define suitable drying conditions and to analyze the results. The study includes initial droplet diameters varying from 350μm to 550μm and initial mannitol mass fractions in water droplets ranging from 5% to 15%. The surrounding air temperature is varied from 80°C to 120°C. Additionally, different relative humidity of the surrounding air between 1% and 7.5% is studied. Based on the DoE, correlations for results from both experiments and simulations including the temporal evolution of the droplet surface area and the final particle size are derived and discussed. Major influences are identified that dominate particle drying characteristics.</description><subject>Acoustic levitator</subject><subject>Bi-component droplet drying</subject><subject>Design of experiments (DoE)</subject><subject>Droplets</subject><subject>Drying</subject><subject>Evaporation</subject><subject>Formations</subject><subject>Mannitol</subject><subject>Mannitol–water droplets</subject><subject>Mathematical models</subject><subject>Numerical model</subject><subject>Particle size</subject><subject>Relative humidity</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUMtOwzAQtBBIlMI_5NhLgtdpXjdQxVMILnC2HHvTukrsYDsV_XtcFU5cOK1mdna0M4QsgGZAobzeZnq7QREG4X1wwvgOXcYoFBmwjJbshMygrpqUQd2ckhmlUKVNDvScXHi_PUC6LGdk_ToN6LQUfSKMSvBrjGhAEyLhw6T2ie2SsMFEub026wNqdSrtMFoTVZG2Y4_BJ5NR6JKdcNpO_lctrVE6aGv8JTnrRO_x6mfOycf93fvqMX15e3ha3b6kcrmEkMoqbzqALlcSGqBYolRtwSrIBavbIs9lxZSsu7wVLQDW2JYVFFQgFYBdvJ6TxdF3dPZzQh_4oL3EvhcG42McaihpWbG8iNKbo1Q6673Djo8xunB7DpQfOuZb_rdjfuiYA-Ox42jxfLTAGGmn49ZLjUai0g5l4Mrq_5t9A1emlRQ</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Grosshans, Holger</creator><creator>Griesing, Matthias</creator><creator>Mönckedieck, Mathias</creator><creator>Hellwig, Thomas</creator><creator>Walther, Benjamin</creator><creator>Gopireddy, Srikanth R.</creator><creator>Sedelmayer, Robert</creator><creator>Pauer, Werner</creator><creator>Moritz, Hans-Ulrich</creator><creator>Urbanetz, Nora A.</creator><creator>Gutheil, Eva</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201605</creationdate><title>Numerical and experimental study of the drying of bi-component droplets under various drying conditions</title><author>Grosshans, Holger ; Griesing, Matthias ; Mönckedieck, Mathias ; Hellwig, Thomas ; Walther, Benjamin ; Gopireddy, Srikanth R. ; Sedelmayer, Robert ; Pauer, Werner ; Moritz, Hans-Ulrich ; Urbanetz, Nora A. ; Gutheil, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-c739f11f3dc1910e6ecdb52713a28b533c72dc8f3bab11e8eb67150ae0a1efc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustic levitator</topic><topic>Bi-component droplet drying</topic><topic>Design of experiments (DoE)</topic><topic>Droplets</topic><topic>Drying</topic><topic>Evaporation</topic><topic>Formations</topic><topic>Mannitol</topic><topic>Mannitol–water droplets</topic><topic>Mathematical models</topic><topic>Numerical model</topic><topic>Particle size</topic><topic>Relative humidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grosshans, Holger</creatorcontrib><creatorcontrib>Griesing, Matthias</creatorcontrib><creatorcontrib>Mönckedieck, Mathias</creatorcontrib><creatorcontrib>Hellwig, Thomas</creatorcontrib><creatorcontrib>Walther, Benjamin</creatorcontrib><creatorcontrib>Gopireddy, Srikanth R.</creatorcontrib><creatorcontrib>Sedelmayer, Robert</creatorcontrib><creatorcontrib>Pauer, Werner</creatorcontrib><creatorcontrib>Moritz, Hans-Ulrich</creatorcontrib><creatorcontrib>Urbanetz, Nora A.</creatorcontrib><creatorcontrib>Gutheil, Eva</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosshans, Holger</au><au>Griesing, Matthias</au><au>Mönckedieck, Mathias</au><au>Hellwig, Thomas</au><au>Walther, Benjamin</au><au>Gopireddy, Srikanth R.</au><au>Sedelmayer, Robert</au><au>Pauer, Werner</au><au>Moritz, Hans-Ulrich</au><au>Urbanetz, Nora A.</au><au>Gutheil, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and experimental study of the drying of bi-component droplets under various drying conditions</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2016-05</date><risdate>2016</risdate><volume>96</volume><spage>97</spage><epage>109</epage><pages>97-109</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Mannitol–water single droplet drying is studied in an acoustic levitator.•Numerical model for solid layer formation and growth including mannitol properties.•Design of experiments with respect to initial droplet diameter, mannitol mass fraction and drying temperature.•Experimental and numerical results agree favorably for final particle size, porosity and surface reduction.•Design of experiments provides parametric dependencies of both numerical and experimental results on initial parameters.
This paper presents a combined experimental and numerical study of the evaporation and solid layer formation of single bi-component mannitol–water droplets in hot air. Experimentally, the process of droplet evaporation and drying is studied in a custom-built acoustic levitator. The experimental results are compared with numerical simulations of spherically symmetric bi-component droplets in an unsteady, one-dimensional configuration. The model includes evaporation and solid layer formation. This approach enables the comparison of the temporal variation of the droplet size and the porosity, which are related to the final particle sizes. The study is performed for various drying conditions and initial droplet sizes as well as compositions of the droplets. The objective of this paper is the derivation and validation of a suitable model to predict the properties of spray-dried mannitol particles, depending on their drying conditions. A design of experiments (DoE) is used to define suitable drying conditions and to analyze the results. The study includes initial droplet diameters varying from 350μm to 550μm and initial mannitol mass fractions in water droplets ranging from 5% to 15%. The surrounding air temperature is varied from 80°C to 120°C. Additionally, different relative humidity of the surrounding air between 1% and 7.5% is studied. Based on the DoE, correlations for results from both experiments and simulations including the temporal evolution of the droplet surface area and the final particle size are derived and discussed. Major influences are identified that dominate particle drying characteristics.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2015.12.062</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2016-05, Vol.96, p.97-109 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816067235 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Acoustic levitator Bi-component droplet drying Design of experiments (DoE) Droplets Drying Evaporation Formations Mannitol Mannitol–water droplets Mathematical models Numerical model Particle size Relative humidity |
title | Numerical and experimental study of the drying of bi-component droplets under various drying conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20experimental%20study%20of%20the%20drying%20of%20bi-component%20droplets%20under%20various%20drying%20conditions&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Grosshans,%20Holger&rft.date=2016-05&rft.volume=96&rft.spage=97&rft.epage=109&rft.pages=97-109&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2015.12.062&rft_dat=%3Cproquest_cross%3E1816067235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816067235&rft_id=info:pmid/&rft_els_id=S001793101501087X&rfr_iscdi=true |