Assessing different parameters estimation methods of Weibull distribution to compute wind power density

•Effectiveness of six numerical methods is evaluated to determine wind power density.•More appropriate method for computing the daily wind power density is estimated.•Four windy stations located in the south part of Alberta, Canada namely is investigated.•The more appropriate parameters estimation m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2016-01, Vol.108, p.322-335
Hauptverfasser: Mohammadi, Kasra, Alavi, Omid, Mostafaeipour, Ali, Goudarzi, Navid, Jalilvand, Mahdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue
container_start_page 322
container_title Energy conversion and management
container_volume 108
creator Mohammadi, Kasra
Alavi, Omid
Mostafaeipour, Ali
Goudarzi, Navid
Jalilvand, Mahdi
description •Effectiveness of six numerical methods is evaluated to determine wind power density.•More appropriate method for computing the daily wind power density is estimated.•Four windy stations located in the south part of Alberta, Canada namely is investigated.•The more appropriate parameters estimation method was not identical among all examined stations. In this study, the effectiveness of six numerical methods is evaluated to determine the shape (k) and scale (c) parameters of Weibull distribution function for the purpose of calculating the wind power density. The selected methods are graphical method (GP), empirical method of Justus (EMJ), empirical method of Lysen (EML), energy pattern factor method (EPF), maximum likelihood method (ML) and modified maximum likelihood method (MML). The purpose of this study is to identify the more appropriate method for computing the wind power density in four stations distributed in Alberta province of Canada namely Edmonton City Center Awos, Grande Prairie A, Lethbridge A and Waterton Park Gate. To provide a complete analysis, the evaluations are performed on both daily and monthly scales. The results indicate that the precision of computed wind power density values change when different parameters estimation methods are used to determine the k and c parameters. Four methods of EMJ, EML, EPF and ML present very favorable efficiency while the GP method shows weak ability for all stations. However, it is found that the more effective method is not similar among stations owing to the difference in the wind characteristics.
doi_str_mv 10.1016/j.enconman.2015.11.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816066726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890415010286</els_id><sourcerecordid>1790931211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-d8abb27428762b094ef218e23b40f8629d1ba2d6a3aeebb20b673e0469fe299a3</originalsourceid><addsrcrecordid>eNqFkc1O3TAQha2KSr3QvkLlZTcJHic48a4I8SchsQF1aTnxBHyV2MHjC-Lta7iwZnUs-ztHMz6M_QZRgwB1vK0xjDEsNtRSwEkNUBf5xjbQd7qSUnYHbCNAq6rXov3BDom2QojmRKgNezglQiIfHrjz04QJQ-arTXbBjIk4UvaLzT4GXm4eoyMeJ_4P_bCb52KhnMrx_T1HPsZl3WXkLz44vsYXTNxhIJ9ff7Lvk50Jf33oEbu_OL87u6pubi-vz05vqrEFnSvX22GQXSv7TslB6BYnCT3KZmjF1CupHQxWOmUbi1hIMaiuQdEqPaHU2jZH7M8-d03xaVemN4unEefZBow7MtCDEkp1Un2NdlroBiRAQdUeHVMkSjiZNZVvSa8GhHkrwWzNZwnmrQQDYIoU49-9EcvOzx6TodEXEp1POGbjov8q4j90vZXx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790931211</pqid></control><display><type>article</type><title>Assessing different parameters estimation methods of Weibull distribution to compute wind power density</title><source>Elsevier ScienceDirect Journals Collection</source><creator>Mohammadi, Kasra ; Alavi, Omid ; Mostafaeipour, Ali ; Goudarzi, Navid ; Jalilvand, Mahdi</creator><creatorcontrib>Mohammadi, Kasra ; Alavi, Omid ; Mostafaeipour, Ali ; Goudarzi, Navid ; Jalilvand, Mahdi</creatorcontrib><description>•Effectiveness of six numerical methods is evaluated to determine wind power density.•More appropriate method for computing the daily wind power density is estimated.•Four windy stations located in the south part of Alberta, Canada namely is investigated.•The more appropriate parameters estimation method was not identical among all examined stations. In this study, the effectiveness of six numerical methods is evaluated to determine the shape (k) and scale (c) parameters of Weibull distribution function for the purpose of calculating the wind power density. The selected methods are graphical method (GP), empirical method of Justus (EMJ), empirical method of Lysen (EML), energy pattern factor method (EPF), maximum likelihood method (ML) and modified maximum likelihood method (MML). The purpose of this study is to identify the more appropriate method for computing the wind power density in four stations distributed in Alberta province of Canada namely Edmonton City Center Awos, Grande Prairie A, Lethbridge A and Waterton Park Gate. To provide a complete analysis, the evaluations are performed on both daily and monthly scales. The results indicate that the precision of computed wind power density values change when different parameters estimation methods are used to determine the k and c parameters. Four methods of EMJ, EML, EPF and ML present very favorable efficiency while the GP method shows weak ability for all stations. However, it is found that the more effective method is not similar among stations owing to the difference in the wind characteristics.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2015.11.015</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Comparative evaluation ; Density ; Empirical analysis ; Mathematical analysis ; Mathematical models ; Parameter estimation ; Parameters estimation methods ; Stations ; Statistical analysis ; Weibull distribution ; Wind power ; Wind power density ; Wind speed</subject><ispartof>Energy conversion and management, 2016-01, Vol.108, p.322-335</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-d8abb27428762b094ef218e23b40f8629d1ba2d6a3aeebb20b673e0469fe299a3</citedby><cites>FETCH-LOGICAL-c419t-d8abb27428762b094ef218e23b40f8629d1ba2d6a3aeebb20b673e0469fe299a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890415010286$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mohammadi, Kasra</creatorcontrib><creatorcontrib>Alavi, Omid</creatorcontrib><creatorcontrib>Mostafaeipour, Ali</creatorcontrib><creatorcontrib>Goudarzi, Navid</creatorcontrib><creatorcontrib>Jalilvand, Mahdi</creatorcontrib><title>Assessing different parameters estimation methods of Weibull distribution to compute wind power density</title><title>Energy conversion and management</title><description>•Effectiveness of six numerical methods is evaluated to determine wind power density.•More appropriate method for computing the daily wind power density is estimated.•Four windy stations located in the south part of Alberta, Canada namely is investigated.•The more appropriate parameters estimation method was not identical among all examined stations. In this study, the effectiveness of six numerical methods is evaluated to determine the shape (k) and scale (c) parameters of Weibull distribution function for the purpose of calculating the wind power density. The selected methods are graphical method (GP), empirical method of Justus (EMJ), empirical method of Lysen (EML), energy pattern factor method (EPF), maximum likelihood method (ML) and modified maximum likelihood method (MML). The purpose of this study is to identify the more appropriate method for computing the wind power density in four stations distributed in Alberta province of Canada namely Edmonton City Center Awos, Grande Prairie A, Lethbridge A and Waterton Park Gate. To provide a complete analysis, the evaluations are performed on both daily and monthly scales. The results indicate that the precision of computed wind power density values change when different parameters estimation methods are used to determine the k and c parameters. Four methods of EMJ, EML, EPF and ML present very favorable efficiency while the GP method shows weak ability for all stations. However, it is found that the more effective method is not similar among stations owing to the difference in the wind characteristics.</description><subject>Comparative evaluation</subject><subject>Density</subject><subject>Empirical analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Parameters estimation methods</subject><subject>Stations</subject><subject>Statistical analysis</subject><subject>Weibull distribution</subject><subject>Wind power</subject><subject>Wind power density</subject><subject>Wind speed</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3TAQha2KSr3QvkLlZTcJHic48a4I8SchsQF1aTnxBHyV2MHjC-Lta7iwZnUs-ztHMz6M_QZRgwB1vK0xjDEsNtRSwEkNUBf5xjbQd7qSUnYHbCNAq6rXov3BDom2QojmRKgNezglQiIfHrjz04QJQ-arTXbBjIk4UvaLzT4GXm4eoyMeJ_4P_bCb52KhnMrx_T1HPsZl3WXkLz44vsYXTNxhIJ9ff7Lvk50Jf33oEbu_OL87u6pubi-vz05vqrEFnSvX22GQXSv7TslB6BYnCT3KZmjF1CupHQxWOmUbi1hIMaiuQdEqPaHU2jZH7M8-d03xaVemN4unEefZBow7MtCDEkp1Un2NdlroBiRAQdUeHVMkSjiZNZVvSa8GhHkrwWzNZwnmrQQDYIoU49-9EcvOzx6TodEXEp1POGbjov8q4j90vZXx</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Mohammadi, Kasra</creator><creator>Alavi, Omid</creator><creator>Mostafaeipour, Ali</creator><creator>Goudarzi, Navid</creator><creator>Jalilvand, Mahdi</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Assessing different parameters estimation methods of Weibull distribution to compute wind power density</title><author>Mohammadi, Kasra ; Alavi, Omid ; Mostafaeipour, Ali ; Goudarzi, Navid ; Jalilvand, Mahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-d8abb27428762b094ef218e23b40f8629d1ba2d6a3aeebb20b673e0469fe299a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Comparative evaluation</topic><topic>Density</topic><topic>Empirical analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Parameters estimation methods</topic><topic>Stations</topic><topic>Statistical analysis</topic><topic>Weibull distribution</topic><topic>Wind power</topic><topic>Wind power density</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadi, Kasra</creatorcontrib><creatorcontrib>Alavi, Omid</creatorcontrib><creatorcontrib>Mostafaeipour, Ali</creatorcontrib><creatorcontrib>Goudarzi, Navid</creatorcontrib><creatorcontrib>Jalilvand, Mahdi</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadi, Kasra</au><au>Alavi, Omid</au><au>Mostafaeipour, Ali</au><au>Goudarzi, Navid</au><au>Jalilvand, Mahdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing different parameters estimation methods of Weibull distribution to compute wind power density</atitle><jtitle>Energy conversion and management</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>108</volume><spage>322</spage><epage>335</epage><pages>322-335</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•Effectiveness of six numerical methods is evaluated to determine wind power density.•More appropriate method for computing the daily wind power density is estimated.•Four windy stations located in the south part of Alberta, Canada namely is investigated.•The more appropriate parameters estimation method was not identical among all examined stations. In this study, the effectiveness of six numerical methods is evaluated to determine the shape (k) and scale (c) parameters of Weibull distribution function for the purpose of calculating the wind power density. The selected methods are graphical method (GP), empirical method of Justus (EMJ), empirical method of Lysen (EML), energy pattern factor method (EPF), maximum likelihood method (ML) and modified maximum likelihood method (MML). The purpose of this study is to identify the more appropriate method for computing the wind power density in four stations distributed in Alberta province of Canada namely Edmonton City Center Awos, Grande Prairie A, Lethbridge A and Waterton Park Gate. To provide a complete analysis, the evaluations are performed on both daily and monthly scales. The results indicate that the precision of computed wind power density values change when different parameters estimation methods are used to determine the k and c parameters. Four methods of EMJ, EML, EPF and ML present very favorable efficiency while the GP method shows weak ability for all stations. However, it is found that the more effective method is not similar among stations owing to the difference in the wind characteristics.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2015.11.015</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2016-01, Vol.108, p.322-335
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_miscellaneous_1816066726
source Elsevier ScienceDirect Journals Collection
subjects Comparative evaluation
Density
Empirical analysis
Mathematical analysis
Mathematical models
Parameter estimation
Parameters estimation methods
Stations
Statistical analysis
Weibull distribution
Wind power
Wind power density
Wind speed
title Assessing different parameters estimation methods of Weibull distribution to compute wind power density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20different%20parameters%20estimation%20methods%20of%20Weibull%20distribution%20to%20compute%20wind%20power%20density&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Mohammadi,%20Kasra&rft.date=2016-01-01&rft.volume=108&rft.spage=322&rft.epage=335&rft.pages=322-335&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2015.11.015&rft_dat=%3Cproquest_cross%3E1790931211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790931211&rft_id=info:pmid/&rft_els_id=S0196890415010286&rfr_iscdi=true