Collective learning modeling based on the kinetic theory of active particles

This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of life reviews 2016-03, Vol.16, p.123-139
Hauptverfasser: Burini, D., De Lillo, S., Gibelli, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue
container_start_page 123
container_title Physics of life reviews
container_volume 16
creator Burini, D.
De Lillo, S.
Gibelli, L.
description This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom. •Collective perception and learning are interpreted and classified.•Heterogeneity and non-linearity are expected to play a central role.•The Kinetic Theory of active particles provides a unified framework for the modeling.•The dynamics of probability distributions offers deep insights into learning processes.
doi_str_mv 10.1016/j.plrev.2015.10.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816065291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1571064515001748</els_id><sourcerecordid>1816065291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-c7eaccd64ba7b3acedb789da86e15b28d722ec8f12e135e0e01d96b731bbd2233</originalsourceid><addsrcrecordid>eNqFkM1PGzEQxS1ExVf5CyqhPXLZ4LF3befQA4poQYrUS3u2_DEBp8462JtI_Pf1EugRTvP09N6M5kfIN6AzoCBu1rNtzLifMQp9dWaUqiNyBkryFrpeHlfdS2ip6PpTcl7KmlLOOkVPyCkTfceA8TOyXKQY0Y1hj01Ek4cwPDab5DFOwpqCvklDMz5h8zcMOAY36ZRfmrRqzKG3Nbn6EctX8mVlYsHLt3lB_vy4-724b5e_fj4sbpet6wQbWyfROOdFZ4203Dj0Vqq5N0og9JYpLxlDp1bAEHiPFCn4ubCSg7WeMc4vyPVh7zan5x2WUW9CcRijGTDtigYFgoqezeHzqFRdJ0DOaY3yQ9TlVErGld7msDH5RQPVE3G91q_E9UR8Mivx2rp6O7CzG_T_O--Ia-D7IYCVyD5g1sUFHOrXIVfw2qfw4YF_CwCTgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784461790</pqid></control><display><type>article</type><title>Collective learning modeling based on the kinetic theory of active particles</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Burini, D. ; De Lillo, S. ; Gibelli, L.</creator><creatorcontrib>Burini, D. ; De Lillo, S. ; Gibelli, L.</creatorcontrib><description>This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom. •Collective perception and learning are interpreted and classified.•Heterogeneity and non-linearity are expected to play a central role.•The Kinetic Theory of active particles provides a unified framework for the modeling.•The dynamics of probability distributions offers deep insights into learning processes.</description><identifier>ISSN: 1571-0645</identifier><identifier>EISSN: 1873-1457</identifier><identifier>DOI: 10.1016/j.plrev.2015.10.008</identifier><identifier>PMID: 26542123</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Active particles ; Biological Evolution ; Classrooms ; Game Theory ; Humans ; Kinetic theory ; Kinetics ; Learning ; Mathematical analysis ; Mathematical models ; Modelling ; Models, Theoretical ; Monte Carlo particle method ; Perception ; Populations ; Social learning ; Stochastic differential games</subject><ispartof>Physics of life reviews, 2016-03, Vol.16, p.123-139</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-c7eaccd64ba7b3acedb789da86e15b28d722ec8f12e135e0e01d96b731bbd2233</citedby><cites>FETCH-LOGICAL-c462t-c7eaccd64ba7b3acedb789da86e15b28d722ec8f12e135e0e01d96b731bbd2233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.plrev.2015.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26542123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burini, D.</creatorcontrib><creatorcontrib>De Lillo, S.</creatorcontrib><creatorcontrib>Gibelli, L.</creatorcontrib><title>Collective learning modeling based on the kinetic theory of active particles</title><title>Physics of life reviews</title><addtitle>Phys Life Rev</addtitle><description>This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom. •Collective perception and learning are interpreted and classified.•Heterogeneity and non-linearity are expected to play a central role.•The Kinetic Theory of active particles provides a unified framework for the modeling.•The dynamics of probability distributions offers deep insights into learning processes.</description><subject>Active particles</subject><subject>Biological Evolution</subject><subject>Classrooms</subject><subject>Game Theory</subject><subject>Humans</subject><subject>Kinetic theory</subject><subject>Kinetics</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Models, Theoretical</subject><subject>Monte Carlo particle method</subject><subject>Perception</subject><subject>Populations</subject><subject>Social learning</subject><subject>Stochastic differential games</subject><issn>1571-0645</issn><issn>1873-1457</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1PGzEQxS1ExVf5CyqhPXLZ4LF3befQA4poQYrUS3u2_DEBp8462JtI_Pf1EugRTvP09N6M5kfIN6AzoCBu1rNtzLifMQp9dWaUqiNyBkryFrpeHlfdS2ip6PpTcl7KmlLOOkVPyCkTfceA8TOyXKQY0Y1hj01Ek4cwPDab5DFOwpqCvklDMz5h8zcMOAY36ZRfmrRqzKG3Nbn6EctX8mVlYsHLt3lB_vy4-724b5e_fj4sbpet6wQbWyfROOdFZ4203Dj0Vqq5N0og9JYpLxlDp1bAEHiPFCn4ubCSg7WeMc4vyPVh7zan5x2WUW9CcRijGTDtigYFgoqezeHzqFRdJ0DOaY3yQ9TlVErGld7msDH5RQPVE3G91q_E9UR8Mivx2rp6O7CzG_T_O--Ia-D7IYCVyD5g1sUFHOrXIVfw2qfw4YF_CwCTgw</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Burini, D.</creator><creator>De Lillo, S.</creator><creator>Gibelli, L.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201603</creationdate><title>Collective learning modeling based on the kinetic theory of active particles</title><author>Burini, D. ; De Lillo, S. ; Gibelli, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-c7eaccd64ba7b3acedb789da86e15b28d722ec8f12e135e0e01d96b731bbd2233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Active particles</topic><topic>Biological Evolution</topic><topic>Classrooms</topic><topic>Game Theory</topic><topic>Humans</topic><topic>Kinetic theory</topic><topic>Kinetics</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Models, Theoretical</topic><topic>Monte Carlo particle method</topic><topic>Perception</topic><topic>Populations</topic><topic>Social learning</topic><topic>Stochastic differential games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burini, D.</creatorcontrib><creatorcontrib>De Lillo, S.</creatorcontrib><creatorcontrib>Gibelli, L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of life reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burini, D.</au><au>De Lillo, S.</au><au>Gibelli, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collective learning modeling based on the kinetic theory of active particles</atitle><jtitle>Physics of life reviews</jtitle><addtitle>Phys Life Rev</addtitle><date>2016-03</date><risdate>2016</risdate><volume>16</volume><spage>123</spage><epage>139</epage><pages>123-139</pages><issn>1571-0645</issn><eissn>1873-1457</eissn><abstract>This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom. •Collective perception and learning are interpreted and classified.•Heterogeneity and non-linearity are expected to play a central role.•The Kinetic Theory of active particles provides a unified framework for the modeling.•The dynamics of probability distributions offers deep insights into learning processes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26542123</pmid><doi>10.1016/j.plrev.2015.10.008</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1571-0645
ispartof Physics of life reviews, 2016-03, Vol.16, p.123-139
issn 1571-0645
1873-1457
language eng
recordid cdi_proquest_miscellaneous_1816065291
source MEDLINE; Elsevier ScienceDirect Journals
subjects Active particles
Biological Evolution
Classrooms
Game Theory
Humans
Kinetic theory
Kinetics
Learning
Mathematical analysis
Mathematical models
Modelling
Models, Theoretical
Monte Carlo particle method
Perception
Populations
Social learning
Stochastic differential games
title Collective learning modeling based on the kinetic theory of active particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collective%20learning%20modeling%20based%20on%20the%20kinetic%20theory%20of%20active%20particles&rft.jtitle=Physics%20of%20life%20reviews&rft.au=Burini,%20D.&rft.date=2016-03&rft.volume=16&rft.spage=123&rft.epage=139&rft.pages=123-139&rft.issn=1571-0645&rft.eissn=1873-1457&rft_id=info:doi/10.1016/j.plrev.2015.10.008&rft_dat=%3Cproquest_cross%3E1816065291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784461790&rft_id=info:pmid/26542123&rft_els_id=S1571064515001748&rfr_iscdi=true