Collective learning modeling based on the kinetic theory of active particles
This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling...
Gespeichert in:
Veröffentlicht in: | Physics of life reviews 2016-03, Vol.16, p.123-139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139 |
---|---|
container_issue | |
container_start_page | 123 |
container_title | Physics of life reviews |
container_volume | 16 |
creator | Burini, D. De Lillo, S. Gibelli, L. |
description | This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom.
•Collective perception and learning are interpreted and classified.•Heterogeneity and non-linearity are expected to play a central role.•The Kinetic Theory of active particles provides a unified framework for the modeling.•The dynamics of probability distributions offers deep insights into learning processes. |
doi_str_mv | 10.1016/j.plrev.2015.10.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816065291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1571064515001748</els_id><sourcerecordid>1816065291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-c7eaccd64ba7b3acedb789da86e15b28d722ec8f12e135e0e01d96b731bbd2233</originalsourceid><addsrcrecordid>eNqFkM1PGzEQxS1ExVf5CyqhPXLZ4LF3befQA4poQYrUS3u2_DEBp8462JtI_Pf1EugRTvP09N6M5kfIN6AzoCBu1rNtzLifMQp9dWaUqiNyBkryFrpeHlfdS2ip6PpTcl7KmlLOOkVPyCkTfceA8TOyXKQY0Y1hj01Ek4cwPDab5DFOwpqCvklDMz5h8zcMOAY36ZRfmrRqzKG3Nbn6EctX8mVlYsHLt3lB_vy4-724b5e_fj4sbpet6wQbWyfROOdFZ4203Dj0Vqq5N0og9JYpLxlDp1bAEHiPFCn4ubCSg7WeMc4vyPVh7zan5x2WUW9CcRijGTDtigYFgoqezeHzqFRdJ0DOaY3yQ9TlVErGld7msDH5RQPVE3G91q_E9UR8Mivx2rp6O7CzG_T_O--Ia-D7IYCVyD5g1sUFHOrXIVfw2qfw4YF_CwCTgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784461790</pqid></control><display><type>article</type><title>Collective learning modeling based on the kinetic theory of active particles</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Burini, D. ; De Lillo, S. ; Gibelli, L.</creator><creatorcontrib>Burini, D. ; De Lillo, S. ; Gibelli, L.</creatorcontrib><description>This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom.
•Collective perception and learning are interpreted and classified.•Heterogeneity and non-linearity are expected to play a central role.•The Kinetic Theory of active particles provides a unified framework for the modeling.•The dynamics of probability distributions offers deep insights into learning processes.</description><identifier>ISSN: 1571-0645</identifier><identifier>EISSN: 1873-1457</identifier><identifier>DOI: 10.1016/j.plrev.2015.10.008</identifier><identifier>PMID: 26542123</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Active particles ; Biological Evolution ; Classrooms ; Game Theory ; Humans ; Kinetic theory ; Kinetics ; Learning ; Mathematical analysis ; Mathematical models ; Modelling ; Models, Theoretical ; Monte Carlo particle method ; Perception ; Populations ; Social learning ; Stochastic differential games</subject><ispartof>Physics of life reviews, 2016-03, Vol.16, p.123-139</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-c7eaccd64ba7b3acedb789da86e15b28d722ec8f12e135e0e01d96b731bbd2233</citedby><cites>FETCH-LOGICAL-c462t-c7eaccd64ba7b3acedb789da86e15b28d722ec8f12e135e0e01d96b731bbd2233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.plrev.2015.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26542123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burini, D.</creatorcontrib><creatorcontrib>De Lillo, S.</creatorcontrib><creatorcontrib>Gibelli, L.</creatorcontrib><title>Collective learning modeling based on the kinetic theory of active particles</title><title>Physics of life reviews</title><addtitle>Phys Life Rev</addtitle><description>This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom.
•Collective perception and learning are interpreted and classified.•Heterogeneity and non-linearity are expected to play a central role.•The Kinetic Theory of active particles provides a unified framework for the modeling.•The dynamics of probability distributions offers deep insights into learning processes.</description><subject>Active particles</subject><subject>Biological Evolution</subject><subject>Classrooms</subject><subject>Game Theory</subject><subject>Humans</subject><subject>Kinetic theory</subject><subject>Kinetics</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Models, Theoretical</subject><subject>Monte Carlo particle method</subject><subject>Perception</subject><subject>Populations</subject><subject>Social learning</subject><subject>Stochastic differential games</subject><issn>1571-0645</issn><issn>1873-1457</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1PGzEQxS1ExVf5CyqhPXLZ4LF3befQA4poQYrUS3u2_DEBp8462JtI_Pf1EugRTvP09N6M5kfIN6AzoCBu1rNtzLifMQp9dWaUqiNyBkryFrpeHlfdS2ip6PpTcl7KmlLOOkVPyCkTfceA8TOyXKQY0Y1hj01Ek4cwPDab5DFOwpqCvklDMz5h8zcMOAY36ZRfmrRqzKG3Nbn6EctX8mVlYsHLt3lB_vy4-724b5e_fj4sbpet6wQbWyfROOdFZ4203Dj0Vqq5N0og9JYpLxlDp1bAEHiPFCn4ubCSg7WeMc4vyPVh7zan5x2WUW9CcRijGTDtigYFgoqezeHzqFRdJ0DOaY3yQ9TlVErGld7msDH5RQPVE3G91q_E9UR8Mivx2rp6O7CzG_T_O--Ia-D7IYCVyD5g1sUFHOrXIVfw2qfw4YF_CwCTgw</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Burini, D.</creator><creator>De Lillo, S.</creator><creator>Gibelli, L.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201603</creationdate><title>Collective learning modeling based on the kinetic theory of active particles</title><author>Burini, D. ; De Lillo, S. ; Gibelli, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-c7eaccd64ba7b3acedb789da86e15b28d722ec8f12e135e0e01d96b731bbd2233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Active particles</topic><topic>Biological Evolution</topic><topic>Classrooms</topic><topic>Game Theory</topic><topic>Humans</topic><topic>Kinetic theory</topic><topic>Kinetics</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Models, Theoretical</topic><topic>Monte Carlo particle method</topic><topic>Perception</topic><topic>Populations</topic><topic>Social learning</topic><topic>Stochastic differential games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burini, D.</creatorcontrib><creatorcontrib>De Lillo, S.</creatorcontrib><creatorcontrib>Gibelli, L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of life reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burini, D.</au><au>De Lillo, S.</au><au>Gibelli, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collective learning modeling based on the kinetic theory of active particles</atitle><jtitle>Physics of life reviews</jtitle><addtitle>Phys Life Rev</addtitle><date>2016-03</date><risdate>2016</risdate><volume>16</volume><spage>123</spage><epage>139</epage><pages>123-139</pages><issn>1571-0645</issn><eissn>1873-1457</eissn><abstract>This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom.
•Collective perception and learning are interpreted and classified.•Heterogeneity and non-linearity are expected to play a central role.•The Kinetic Theory of active particles provides a unified framework for the modeling.•The dynamics of probability distributions offers deep insights into learning processes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26542123</pmid><doi>10.1016/j.plrev.2015.10.008</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1571-0645 |
ispartof | Physics of life reviews, 2016-03, Vol.16, p.123-139 |
issn | 1571-0645 1873-1457 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816065291 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Active particles Biological Evolution Classrooms Game Theory Humans Kinetic theory Kinetics Learning Mathematical analysis Mathematical models Modelling Models, Theoretical Monte Carlo particle method Perception Populations Social learning Stochastic differential games |
title | Collective learning modeling based on the kinetic theory of active particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collective%20learning%20modeling%20based%20on%20the%20kinetic%20theory%20of%20active%20particles&rft.jtitle=Physics%20of%20life%20reviews&rft.au=Burini,%20D.&rft.date=2016-03&rft.volume=16&rft.spage=123&rft.epage=139&rft.pages=123-139&rft.issn=1571-0645&rft.eissn=1873-1457&rft_id=info:doi/10.1016/j.plrev.2015.10.008&rft_dat=%3Cproquest_cross%3E1816065291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784461790&rft_id=info:pmid/26542123&rft_els_id=S1571064515001748&rfr_iscdi=true |