A time-parallel approach to strong-constraint four-dimensional variational data assimilation
A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The sol...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2016-05, Vol.313, p.583-593 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 593 |
---|---|
container_issue | |
container_start_page | 583 |
container_title | Journal of computational physics |
container_volume | 313 |
creator | Rao, Vishwas Sandu, Adrian |
description | A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The solutions to the continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than the weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems involving the Lorenz-96 and the shallow water models. |
doi_str_mv | 10.1016/j.jcp.2016.02.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816062113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999116001042</els_id><sourcerecordid>1816062113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-50f78b74c4a20847fa0481f7e39265ce25feba16c5c6f143101dbead392a70c63</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG89ekmdpG3a4mlZ_AcLXvQmhNk00ZRuU5Psgt_erPXsaR4z8xvmPUKuGeQMmLjt815NOU8yB55DCSdkwaAFymsmTskCgDPati07Jxch9ADQVGWzIO-rLNqdphN6HAY9ZDhN3qH6zKLLQvRu_KDKjUmhHWNm3N7TLgFjsG7EITugtxhn3WHEDEOwOzv89i7JmcEh6Ku_uiRvD_ev6ye6eXl8Xq82VBV1EWkFpm62dalK5NCUtUEoG2ZqXbRcVErzyugtMqEqJQwri2S422rs0hhrUKJYkpv5bnr9a69DlDsblB4GHLXbB8kaJkBwxoq0yuZV5V0IXhs5ebtD_y0ZyGOSspcpSXlMUgKXKcnE3M2MTh4OVnsZlNWj0p31WkXZOfsP_QNbzX0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816062113</pqid></control><display><type>article</type><title>A time-parallel approach to strong-constraint four-dimensional variational data assimilation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Rao, Vishwas ; Sandu, Adrian</creator><creatorcontrib>Rao, Vishwas ; Sandu, Adrian</creatorcontrib><description>A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The solutions to the continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than the weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems involving the Lorenz-96 and the shallow water models.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2016.02.040</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adjoint sensitivity analysis ; Assimilation ; Augmented Lagrangian ; Boundaries ; Computation ; Continuity equation ; Data assimilation ; Mathematical models ; Serials ; Shallow water ; Time parallel variational data assimilation ; Variational data assimilation</subject><ispartof>Journal of computational physics, 2016-05, Vol.313, p.583-593</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-50f78b74c4a20847fa0481f7e39265ce25feba16c5c6f143101dbead392a70c63</citedby><cites>FETCH-LOGICAL-c373t-50f78b74c4a20847fa0481f7e39265ce25feba16c5c6f143101dbead392a70c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2016.02.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Rao, Vishwas</creatorcontrib><creatorcontrib>Sandu, Adrian</creatorcontrib><title>A time-parallel approach to strong-constraint four-dimensional variational data assimilation</title><title>Journal of computational physics</title><description>A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The solutions to the continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than the weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems involving the Lorenz-96 and the shallow water models.</description><subject>Adjoint sensitivity analysis</subject><subject>Assimilation</subject><subject>Augmented Lagrangian</subject><subject>Boundaries</subject><subject>Computation</subject><subject>Continuity equation</subject><subject>Data assimilation</subject><subject>Mathematical models</subject><subject>Serials</subject><subject>Shallow water</subject><subject>Time parallel variational data assimilation</subject><subject>Variational data assimilation</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG89ekmdpG3a4mlZ_AcLXvQmhNk00ZRuU5Psgt_erPXsaR4z8xvmPUKuGeQMmLjt815NOU8yB55DCSdkwaAFymsmTskCgDPati07Jxch9ADQVGWzIO-rLNqdphN6HAY9ZDhN3qH6zKLLQvRu_KDKjUmhHWNm3N7TLgFjsG7EITugtxhn3WHEDEOwOzv89i7JmcEh6Ku_uiRvD_ev6ye6eXl8Xq82VBV1EWkFpm62dalK5NCUtUEoG2ZqXbRcVErzyugtMqEqJQwri2S422rs0hhrUKJYkpv5bnr9a69DlDsblB4GHLXbB8kaJkBwxoq0yuZV5V0IXhs5ebtD_y0ZyGOSspcpSXlMUgKXKcnE3M2MTh4OVnsZlNWj0p31WkXZOfsP_QNbzX0w</recordid><startdate>20160515</startdate><enddate>20160515</enddate><creator>Rao, Vishwas</creator><creator>Sandu, Adrian</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160515</creationdate><title>A time-parallel approach to strong-constraint four-dimensional variational data assimilation</title><author>Rao, Vishwas ; Sandu, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-50f78b74c4a20847fa0481f7e39265ce25feba16c5c6f143101dbead392a70c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adjoint sensitivity analysis</topic><topic>Assimilation</topic><topic>Augmented Lagrangian</topic><topic>Boundaries</topic><topic>Computation</topic><topic>Continuity equation</topic><topic>Data assimilation</topic><topic>Mathematical models</topic><topic>Serials</topic><topic>Shallow water</topic><topic>Time parallel variational data assimilation</topic><topic>Variational data assimilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Vishwas</creatorcontrib><creatorcontrib>Sandu, Adrian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Vishwas</au><au>Sandu, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time-parallel approach to strong-constraint four-dimensional variational data assimilation</atitle><jtitle>Journal of computational physics</jtitle><date>2016-05-15</date><risdate>2016</risdate><volume>313</volume><spage>583</spage><epage>593</epage><pages>583-593</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The solutions to the continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than the weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems involving the Lorenz-96 and the shallow water models.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2016.02.040</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2016-05, Vol.313, p.583-593 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816062113 |
source | Access via ScienceDirect (Elsevier) |
subjects | Adjoint sensitivity analysis Assimilation Augmented Lagrangian Boundaries Computation Continuity equation Data assimilation Mathematical models Serials Shallow water Time parallel variational data assimilation Variational data assimilation |
title | A time-parallel approach to strong-constraint four-dimensional variational data assimilation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T10%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time-parallel%20approach%20to%20strong-constraint%20four-dimensional%20variational%20data%20assimilation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Rao,%20Vishwas&rft.date=2016-05-15&rft.volume=313&rft.spage=583&rft.epage=593&rft.pages=583-593&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2016.02.040&rft_dat=%3Cproquest_cross%3E1816062113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816062113&rft_id=info:pmid/&rft_els_id=S0021999116001042&rfr_iscdi=true |