A time-parallel approach to strong-constraint four-dimensional variational data assimilation

A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2016-05, Vol.313, p.583-593
Hauptverfasser: Rao, Vishwas, Sandu, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 593
container_issue
container_start_page 583
container_title Journal of computational physics
container_volume 313
creator Rao, Vishwas
Sandu, Adrian
description A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The solutions to the continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than the weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems involving the Lorenz-96 and the shallow water models.
doi_str_mv 10.1016/j.jcp.2016.02.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816062113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999116001042</els_id><sourcerecordid>1816062113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-50f78b74c4a20847fa0481f7e39265ce25feba16c5c6f143101dbead392a70c63</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG89ekmdpG3a4mlZ_AcLXvQmhNk00ZRuU5Psgt_erPXsaR4z8xvmPUKuGeQMmLjt815NOU8yB55DCSdkwaAFymsmTskCgDPati07Jxch9ADQVGWzIO-rLNqdphN6HAY9ZDhN3qH6zKLLQvRu_KDKjUmhHWNm3N7TLgFjsG7EITugtxhn3WHEDEOwOzv89i7JmcEh6Ku_uiRvD_ev6ye6eXl8Xq82VBV1EWkFpm62dalK5NCUtUEoG2ZqXbRcVErzyugtMqEqJQwri2S422rs0hhrUKJYkpv5bnr9a69DlDsblB4GHLXbB8kaJkBwxoq0yuZV5V0IXhs5ebtD_y0ZyGOSspcpSXlMUgKXKcnE3M2MTh4OVnsZlNWj0p31WkXZOfsP_QNbzX0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816062113</pqid></control><display><type>article</type><title>A time-parallel approach to strong-constraint four-dimensional variational data assimilation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Rao, Vishwas ; Sandu, Adrian</creator><creatorcontrib>Rao, Vishwas ; Sandu, Adrian</creatorcontrib><description>A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The solutions to the continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than the weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems involving the Lorenz-96 and the shallow water models.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2016.02.040</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adjoint sensitivity analysis ; Assimilation ; Augmented Lagrangian ; Boundaries ; Computation ; Continuity equation ; Data assimilation ; Mathematical models ; Serials ; Shallow water ; Time parallel variational data assimilation ; Variational data assimilation</subject><ispartof>Journal of computational physics, 2016-05, Vol.313, p.583-593</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-50f78b74c4a20847fa0481f7e39265ce25feba16c5c6f143101dbead392a70c63</citedby><cites>FETCH-LOGICAL-c373t-50f78b74c4a20847fa0481f7e39265ce25feba16c5c6f143101dbead392a70c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2016.02.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Rao, Vishwas</creatorcontrib><creatorcontrib>Sandu, Adrian</creatorcontrib><title>A time-parallel approach to strong-constraint four-dimensional variational data assimilation</title><title>Journal of computational physics</title><description>A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The solutions to the continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than the weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems involving the Lorenz-96 and the shallow water models.</description><subject>Adjoint sensitivity analysis</subject><subject>Assimilation</subject><subject>Augmented Lagrangian</subject><subject>Boundaries</subject><subject>Computation</subject><subject>Continuity equation</subject><subject>Data assimilation</subject><subject>Mathematical models</subject><subject>Serials</subject><subject>Shallow water</subject><subject>Time parallel variational data assimilation</subject><subject>Variational data assimilation</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG89ekmdpG3a4mlZ_AcLXvQmhNk00ZRuU5Psgt_erPXsaR4z8xvmPUKuGeQMmLjt815NOU8yB55DCSdkwaAFymsmTskCgDPati07Jxch9ADQVGWzIO-rLNqdphN6HAY9ZDhN3qH6zKLLQvRu_KDKjUmhHWNm3N7TLgFjsG7EITugtxhn3WHEDEOwOzv89i7JmcEh6Ku_uiRvD_ev6ye6eXl8Xq82VBV1EWkFpm62dalK5NCUtUEoG2ZqXbRcVErzyugtMqEqJQwri2S422rs0hhrUKJYkpv5bnr9a69DlDsblB4GHLXbB8kaJkBwxoq0yuZV5V0IXhs5ebtD_y0ZyGOSspcpSXlMUgKXKcnE3M2MTh4OVnsZlNWj0p31WkXZOfsP_QNbzX0w</recordid><startdate>20160515</startdate><enddate>20160515</enddate><creator>Rao, Vishwas</creator><creator>Sandu, Adrian</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160515</creationdate><title>A time-parallel approach to strong-constraint four-dimensional variational data assimilation</title><author>Rao, Vishwas ; Sandu, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-50f78b74c4a20847fa0481f7e39265ce25feba16c5c6f143101dbead392a70c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adjoint sensitivity analysis</topic><topic>Assimilation</topic><topic>Augmented Lagrangian</topic><topic>Boundaries</topic><topic>Computation</topic><topic>Continuity equation</topic><topic>Data assimilation</topic><topic>Mathematical models</topic><topic>Serials</topic><topic>Shallow water</topic><topic>Time parallel variational data assimilation</topic><topic>Variational data assimilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Vishwas</creatorcontrib><creatorcontrib>Sandu, Adrian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Vishwas</au><au>Sandu, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time-parallel approach to strong-constraint four-dimensional variational data assimilation</atitle><jtitle>Journal of computational physics</jtitle><date>2016-05-15</date><risdate>2016</risdate><volume>313</volume><spage>583</spage><epage>593</epage><pages>583-593</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The solutions to the continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than the weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems involving the Lorenz-96 and the shallow water models.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2016.02.040</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2016-05, Vol.313, p.583-593
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1816062113
source Access via ScienceDirect (Elsevier)
subjects Adjoint sensitivity analysis
Assimilation
Augmented Lagrangian
Boundaries
Computation
Continuity equation
Data assimilation
Mathematical models
Serials
Shallow water
Time parallel variational data assimilation
Variational data assimilation
title A time-parallel approach to strong-constraint four-dimensional variational data assimilation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T10%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time-parallel%20approach%20to%20strong-constraint%20four-dimensional%20variational%20data%20assimilation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Rao,%20Vishwas&rft.date=2016-05-15&rft.volume=313&rft.spage=583&rft.epage=593&rft.pages=583-593&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2016.02.040&rft_dat=%3Cproquest_cross%3E1816062113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816062113&rft_id=info:pmid/&rft_els_id=S0021999116001042&rfr_iscdi=true