Transitional flow in intracranial aneurysms – A space and time refinement study below the Kolmogorov scales using Lattice Boltzmann Method

•Simulations on aneurysms with up to one billion cells.•Quantification of Kolmogorov micro-scales.•A systematic assessment of laminar and transitional flow in aneurysms.•Recommendations on the choice of resolutions for CFD simulations.•Exploration of critical Re at which flow transitions in aneurysm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2016-03, Vol.127, p.36-46
Hauptverfasser: Jain, Kartik, Roller, Sabine, Mardal, Kent-André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue
container_start_page 36
container_title Computers & fluids
container_volume 127
creator Jain, Kartik
Roller, Sabine
Mardal, Kent-André
description •Simulations on aneurysms with up to one billion cells.•Quantification of Kolmogorov micro-scales.•A systematic assessment of laminar and transitional flow in aneurysms.•Recommendations on the choice of resolutions for CFD simulations.•Exploration of critical Re at which flow transitions in aneurysms. Most Computational Fluid Dynamics (CFD) studies of hemodynamics in intracranial aneurysms are based on the assumption of laminar flow due to a relatively low (below 500) parent artery Reynolds number. A few studies have recently demonstrated the occurrence of transitional flow in aneurysms, but these studies employed special finite element schemes tailored to capture transitional nature of flow. In this study we investigate the occurrence of transition using a standard Lattice Boltzmann Method (LBM). The LBM is used because of its computational efficiency, which in the present study allowed us to perform simulations at a higher resolution than has been done in the context of aneurysms before. The high space-time resolutions of 8 µm and 0.11 µs resulted in nearly 1 × 109 cells and 9 × 106 time steps per second and allowed us to quantify the turbulent kinetic energy at resolutions that are of the order of the Kolmogorov scales. We perform an in-depth space and time refinement study on 2 aneurysms; one was previously reported laminar, while the other was reported transitional. Furthermore, we investigate the critical Reynolds number at which the flow transitions in aneurysms under time constant inflow conditions.
doi_str_mv 10.1016/j.compfluid.2015.12.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816060880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793015004089</els_id><sourcerecordid>1816060880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-4bc974aadba8a8f3cc199ad1ceed98cf8175c22c621db3c03753688132dd6a783</originalsourceid><addsrcrecordid>eNqFUMFu1DAQtRCVWArfgI9cknqSbOIclwpaxCIu5Wx5x5PWK8debKdoOfEB3PjDfgleLeKKNNJo3rz3pPcYewOiBgH91b7GMB8mt1hTNwLWNTS1AHjGViCHsRJDNzxnKyG6dTWMrXjBXqa0F-Vum27Fft1F7ZPNNnjt-OTCd259mRw1lo8toPa0xGOaE3_6-ZtveDpopIIanu1MPNJkPc3kM095MUe-o5NLfiD-Kbg53IcYHnlC7SjxJVl_z7c6Z1s83gWXf8zae_6Z8kMwr9jFpF2i13_3Jfv64f3d9W21_XLz8XqzrbCDLlfdDseh09rstNRyahFhHLUBJDKjxEnCsMamwb4Bs2tRtMO67aWEtjGm14NsL9nbs-8hhm8Lpaxmm5CcK1HDkhRI6EUvpBSFOpypGENKJas6RDvreFQg1Kl_tVf_-len_hU0qvRflJuzkkqSR0tRJbTkkYyNhFmZYP_r8QdPH5eX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816060880</pqid></control><display><type>article</type><title>Transitional flow in intracranial aneurysms – A space and time refinement study below the Kolmogorov scales using Lattice Boltzmann Method</title><source>Elsevier ScienceDirect Journals</source><creator>Jain, Kartik ; Roller, Sabine ; Mardal, Kent-André</creator><creatorcontrib>Jain, Kartik ; Roller, Sabine ; Mardal, Kent-André</creatorcontrib><description>•Simulations on aneurysms with up to one billion cells.•Quantification of Kolmogorov micro-scales.•A systematic assessment of laminar and transitional flow in aneurysms.•Recommendations on the choice of resolutions for CFD simulations.•Exploration of critical Re at which flow transitions in aneurysms. Most Computational Fluid Dynamics (CFD) studies of hemodynamics in intracranial aneurysms are based on the assumption of laminar flow due to a relatively low (below 500) parent artery Reynolds number. A few studies have recently demonstrated the occurrence of transitional flow in aneurysms, but these studies employed special finite element schemes tailored to capture transitional nature of flow. In this study we investigate the occurrence of transition using a standard Lattice Boltzmann Method (LBM). The LBM is used because of its computational efficiency, which in the present study allowed us to perform simulations at a higher resolution than has been done in the context of aneurysms before. The high space-time resolutions of 8 µm and 0.11 µs resulted in nearly 1 × 109 cells and 9 × 106 time steps per second and allowed us to quantify the turbulent kinetic energy at resolutions that are of the order of the Kolmogorov scales. We perform an in-depth space and time refinement study on 2 aneurysms; one was previously reported laminar, while the other was reported transitional. Furthermore, we investigate the critical Reynolds number at which the flow transitions in aneurysms under time constant inflow conditions.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2015.12.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Computer simulation ; Convergence ; Fluid flow ; Intracranial aneurysm ; Laminar flow ; Lattice Boltzmann Method ; Mathematical models ; Reynolds number ; Transitional flow ; Turbulence ; Turbulent flow</subject><ispartof>Computers &amp; fluids, 2016-03, Vol.127, p.36-46</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-4bc974aadba8a8f3cc199ad1ceed98cf8175c22c621db3c03753688132dd6a783</citedby><cites>FETCH-LOGICAL-c414t-4bc974aadba8a8f3cc199ad1ceed98cf8175c22c621db3c03753688132dd6a783</cites><orcidid>0000-0002-6540-9304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2015.12.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Jain, Kartik</creatorcontrib><creatorcontrib>Roller, Sabine</creatorcontrib><creatorcontrib>Mardal, Kent-André</creatorcontrib><title>Transitional flow in intracranial aneurysms – A space and time refinement study below the Kolmogorov scales using Lattice Boltzmann Method</title><title>Computers &amp; fluids</title><description>•Simulations on aneurysms with up to one billion cells.•Quantification of Kolmogorov micro-scales.•A systematic assessment of laminar and transitional flow in aneurysms.•Recommendations on the choice of resolutions for CFD simulations.•Exploration of critical Re at which flow transitions in aneurysms. Most Computational Fluid Dynamics (CFD) studies of hemodynamics in intracranial aneurysms are based on the assumption of laminar flow due to a relatively low (below 500) parent artery Reynolds number. A few studies have recently demonstrated the occurrence of transitional flow in aneurysms, but these studies employed special finite element schemes tailored to capture transitional nature of flow. In this study we investigate the occurrence of transition using a standard Lattice Boltzmann Method (LBM). The LBM is used because of its computational efficiency, which in the present study allowed us to perform simulations at a higher resolution than has been done in the context of aneurysms before. The high space-time resolutions of 8 µm and 0.11 µs resulted in nearly 1 × 109 cells and 9 × 106 time steps per second and allowed us to quantify the turbulent kinetic energy at resolutions that are of the order of the Kolmogorov scales. We perform an in-depth space and time refinement study on 2 aneurysms; one was previously reported laminar, while the other was reported transitional. Furthermore, we investigate the critical Reynolds number at which the flow transitions in aneurysms under time constant inflow conditions.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Fluid flow</subject><subject>Intracranial aneurysm</subject><subject>Laminar flow</subject><subject>Lattice Boltzmann Method</subject><subject>Mathematical models</subject><subject>Reynolds number</subject><subject>Transitional flow</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUMFu1DAQtRCVWArfgI9cknqSbOIclwpaxCIu5Wx5x5PWK8debKdoOfEB3PjDfgleLeKKNNJo3rz3pPcYewOiBgH91b7GMB8mt1hTNwLWNTS1AHjGViCHsRJDNzxnKyG6dTWMrXjBXqa0F-Vum27Fft1F7ZPNNnjt-OTCd259mRw1lo8toPa0xGOaE3_6-ZtveDpopIIanu1MPNJkPc3kM095MUe-o5NLfiD-Kbg53IcYHnlC7SjxJVl_z7c6Z1s83gWXf8zae_6Z8kMwr9jFpF2i13_3Jfv64f3d9W21_XLz8XqzrbCDLlfdDseh09rstNRyahFhHLUBJDKjxEnCsMamwb4Bs2tRtMO67aWEtjGm14NsL9nbs-8hhm8Lpaxmm5CcK1HDkhRI6EUvpBSFOpypGENKJas6RDvreFQg1Kl_tVf_-len_hU0qvRflJuzkkqSR0tRJbTkkYyNhFmZYP_r8QdPH5eX</recordid><startdate>20160320</startdate><enddate>20160320</enddate><creator>Jain, Kartik</creator><creator>Roller, Sabine</creator><creator>Mardal, Kent-André</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6540-9304</orcidid></search><sort><creationdate>20160320</creationdate><title>Transitional flow in intracranial aneurysms – A space and time refinement study below the Kolmogorov scales using Lattice Boltzmann Method</title><author>Jain, Kartik ; Roller, Sabine ; Mardal, Kent-André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-4bc974aadba8a8f3cc199ad1ceed98cf8175c22c621db3c03753688132dd6a783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Fluid flow</topic><topic>Intracranial aneurysm</topic><topic>Laminar flow</topic><topic>Lattice Boltzmann Method</topic><topic>Mathematical models</topic><topic>Reynolds number</topic><topic>Transitional flow</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Kartik</creatorcontrib><creatorcontrib>Roller, Sabine</creatorcontrib><creatorcontrib>Mardal, Kent-André</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Kartik</au><au>Roller, Sabine</au><au>Mardal, Kent-André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transitional flow in intracranial aneurysms – A space and time refinement study below the Kolmogorov scales using Lattice Boltzmann Method</atitle><jtitle>Computers &amp; fluids</jtitle><date>2016-03-20</date><risdate>2016</risdate><volume>127</volume><spage>36</spage><epage>46</epage><pages>36-46</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•Simulations on aneurysms with up to one billion cells.•Quantification of Kolmogorov micro-scales.•A systematic assessment of laminar and transitional flow in aneurysms.•Recommendations on the choice of resolutions for CFD simulations.•Exploration of critical Re at which flow transitions in aneurysms. Most Computational Fluid Dynamics (CFD) studies of hemodynamics in intracranial aneurysms are based on the assumption of laminar flow due to a relatively low (below 500) parent artery Reynolds number. A few studies have recently demonstrated the occurrence of transitional flow in aneurysms, but these studies employed special finite element schemes tailored to capture transitional nature of flow. In this study we investigate the occurrence of transition using a standard Lattice Boltzmann Method (LBM). The LBM is used because of its computational efficiency, which in the present study allowed us to perform simulations at a higher resolution than has been done in the context of aneurysms before. The high space-time resolutions of 8 µm and 0.11 µs resulted in nearly 1 × 109 cells and 9 × 106 time steps per second and allowed us to quantify the turbulent kinetic energy at resolutions that are of the order of the Kolmogorov scales. We perform an in-depth space and time refinement study on 2 aneurysms; one was previously reported laminar, while the other was reported transitional. Furthermore, we investigate the critical Reynolds number at which the flow transitions in aneurysms under time constant inflow conditions.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2015.12.011</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6540-9304</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2016-03, Vol.127, p.36-46
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_miscellaneous_1816060880
source Elsevier ScienceDirect Journals
subjects Computational fluid dynamics
Computer simulation
Convergence
Fluid flow
Intracranial aneurysm
Laminar flow
Lattice Boltzmann Method
Mathematical models
Reynolds number
Transitional flow
Turbulence
Turbulent flow
title Transitional flow in intracranial aneurysms – A space and time refinement study below the Kolmogorov scales using Lattice Boltzmann Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transitional%20flow%20in%20intracranial%20aneurysms%20%E2%80%93%20A%20space%20and%20time%20refinement%20study%20below%20the%20Kolmogorov%20scales%20using%20Lattice%20Boltzmann%20Method&rft.jtitle=Computers%20&%20fluids&rft.au=Jain,%20Kartik&rft.date=2016-03-20&rft.volume=127&rft.spage=36&rft.epage=46&rft.pages=36-46&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2015.12.011&rft_dat=%3Cproquest_cross%3E1816060880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816060880&rft_id=info:pmid/&rft_els_id=S0045793015004089&rfr_iscdi=true