A motif-based profile scanning approach for genome-wide prediction of signaling pathways
The rapid increase in genomic information requires new techniques to infer protein function and predict protein–protein interactions. Bioinformatics identifies modular signaling domains within protein sequences with a high degree of accuracy. In contrast, little success has been achieved in predicti...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2001-04, Vol.19 (4), p.348-353 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 353 |
---|---|
container_issue | 4 |
container_start_page | 348 |
container_title | Nature biotechnology |
container_volume | 19 |
creator | Yaffe, Michael B Leparc, German G Lai, Jack Obata, Toshiyuki Volinia, Stefano Cantley, Lewis C |
description | The rapid increase in genomic information requires new techniques to infer protein function and predict protein–protein interactions. Bioinformatics identifies modular signaling domains within protein sequences with a high degree of accuracy. In contrast, little success has been achieved in predicting short linear sequence motifs within proteins targeted by these domains to form complex signaling networks. Here we describe a peptide library-based searching algorithm, accessible over the World Wide Web, that identifies sequence motifs likely to bind to specific protein domains such as 14-3-3, SH2, and SH3 domains, or likely to be phosphorylated by specific protein kinases such as Src and AKT. Predictions from database searches for proteins containing motifs matching two different domains in a common signaling pathway provides a much higher success rate. This technology facilitates prediction of cell signaling networks within proteomes, and could aid in the identification of drug targets for the treatment of human diseases. |
doi_str_mv | 10.1038/86737 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18160584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A190009415</galeid><sourcerecordid>A190009415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-304fecf9362a888de9e19c06b7cd9d44d0eec9e4ba6dc667cb70a060c90bc0e93</originalsourceid><addsrcrecordid>eNqNkV1vFCEUhidGY2vtXzCjURMvph52GAYuN40fTZo08SveEQYOU5oZ2AKT2n8v626s7ZVwAYHnPRzet6qOCZwQaPl7zvq2f1Qdko6yhjDBHpc98L4B0rGD6llKVwDAKGNPqwNCVrztRHtY_VzXc8jONoNKaOpNDNZNWCetvHd-rNWmHCl9WdsQ6xF9mLG5cQYLicbp7IKvg62TG72atoKNypc36jY9r55YNSU83q9H1fePH76dfm7OLz6dna7PG81WfW5aoBa1FS1bKc65QYFEaGBDr40wlBpA1ALpoJjRjPV66EEBAy1g0ICiPare7uqWPq8XTFnOLmmcJuUxLEkSThh0nBbw1QPwKiyxdJ3kqgzOe2gLdLKDRjWhdN6GHJUu0-DsdPC4dUeuiSheCkq6Inh3T1CYjL_yqJaU5NnXL__PXvy4z77ZsTqGlCJauYluVvFWEpDbwOWfwAv3Yv-rZZjR3FH7hAvweg-oEupko_LapX-qdUzQ_s7GVG78iPHOnYcPvtyBXuUl4t9CfshAgciW8vY3eH3HQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222288703</pqid></control><display><type>article</type><title>A motif-based profile scanning approach for genome-wide prediction of signaling pathways</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yaffe, Michael B ; Leparc, German G ; Lai, Jack ; Obata, Toshiyuki ; Volinia, Stefano ; Cantley, Lewis C</creator><creatorcontrib>Yaffe, Michael B ; Leparc, German G ; Lai, Jack ; Obata, Toshiyuki ; Volinia, Stefano ; Cantley, Lewis C</creatorcontrib><description>The rapid increase in genomic information requires new techniques to infer protein function and predict protein–protein interactions. Bioinformatics identifies modular signaling domains within protein sequences with a high degree of accuracy. In contrast, little success has been achieved in predicting short linear sequence motifs within proteins targeted by these domains to form complex signaling networks. Here we describe a peptide library-based searching algorithm, accessible over the World Wide Web, that identifies sequence motifs likely to bind to specific protein domains such as 14-3-3, SH2, and SH3 domains, or likely to be phosphorylated by specific protein kinases such as Src and AKT. Predictions from database searches for proteins containing motifs matching two different domains in a common signaling pathway provides a much higher success rate. This technology facilitates prediction of cell signaling networks within proteomes, and could aid in the identification of drug targets for the treatment of human diseases.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/86737</identifier><identifier>PMID: 11283593</identifier><identifier>CODEN: NABIF9</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Algorithms ; Amino Acid Motifs ; Amino Acid Sequence ; Amino acids ; Animals ; Binding sites ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Cattle ; Cell physiology ; Databases, Factual ; Fundamental and applied biological sciences. Psychology ; Genome ; Genomes ; Humans ; Internet ; Kinases ; Life Sciences ; Mice ; Molecular and cellular biology ; Molecular Sequence Data ; Peptides ; Phosphorylation ; Proteins ; Publishing ; Rats ; Serine - chemistry ; Signal Transduction ; Software ; Threonine - chemistry ; Tyrosine - chemistry ; World Wide Web</subject><ispartof>Nature biotechnology, 2001-04, Vol.19 (4), p.348-353</ispartof><rights>Springer Nature America, Inc. 2001</rights><rights>2001 INIST-CNRS</rights><rights>COPYRIGHT 2001 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-304fecf9362a888de9e19c06b7cd9d44d0eec9e4ba6dc667cb70a060c90bc0e93</citedby><cites>FETCH-LOGICAL-c627t-304fecf9362a888de9e19c06b7cd9d44d0eec9e4ba6dc667cb70a060c90bc0e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/86737$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/86737$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1056947$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11283593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yaffe, Michael B</creatorcontrib><creatorcontrib>Leparc, German G</creatorcontrib><creatorcontrib>Lai, Jack</creatorcontrib><creatorcontrib>Obata, Toshiyuki</creatorcontrib><creatorcontrib>Volinia, Stefano</creatorcontrib><creatorcontrib>Cantley, Lewis C</creatorcontrib><title>A motif-based profile scanning approach for genome-wide prediction of signaling pathways</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>The rapid increase in genomic information requires new techniques to infer protein function and predict protein–protein interactions. Bioinformatics identifies modular signaling domains within protein sequences with a high degree of accuracy. In contrast, little success has been achieved in predicting short linear sequence motifs within proteins targeted by these domains to form complex signaling networks. Here we describe a peptide library-based searching algorithm, accessible over the World Wide Web, that identifies sequence motifs likely to bind to specific protein domains such as 14-3-3, SH2, and SH3 domains, or likely to be phosphorylated by specific protein kinases such as Src and AKT. Predictions from database searches for proteins containing motifs matching two different domains in a common signaling pathway provides a much higher success rate. This technology facilitates prediction of cell signaling networks within proteomes, and could aid in the identification of drug targets for the treatment of human diseases.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cattle</subject><subject>Cell physiology</subject><subject>Databases, Factual</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genome</subject><subject>Genomes</subject><subject>Humans</subject><subject>Internet</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>Peptides</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Publishing</subject><subject>Rats</subject><subject>Serine - chemistry</subject><subject>Signal Transduction</subject><subject>Software</subject><subject>Threonine - chemistry</subject><subject>Tyrosine - chemistry</subject><subject>World Wide Web</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkV1vFCEUhidGY2vtXzCjURMvph52GAYuN40fTZo08SveEQYOU5oZ2AKT2n8v626s7ZVwAYHnPRzet6qOCZwQaPl7zvq2f1Qdko6yhjDBHpc98L4B0rGD6llKVwDAKGNPqwNCVrztRHtY_VzXc8jONoNKaOpNDNZNWCetvHd-rNWmHCl9WdsQ6xF9mLG5cQYLicbp7IKvg62TG72atoKNypc36jY9r55YNSU83q9H1fePH76dfm7OLz6dna7PG81WfW5aoBa1FS1bKc65QYFEaGBDr40wlBpA1ALpoJjRjPV66EEBAy1g0ICiPare7uqWPq8XTFnOLmmcJuUxLEkSThh0nBbw1QPwKiyxdJ3kqgzOe2gLdLKDRjWhdN6GHJUu0-DsdPC4dUeuiSheCkq6Inh3T1CYjL_yqJaU5NnXL__PXvy4z77ZsTqGlCJauYluVvFWEpDbwOWfwAv3Yv-rZZjR3FH7hAvweg-oEupko_LapX-qdUzQ_s7GVG78iPHOnYcPvtyBXuUl4t9CfshAgciW8vY3eH3HQg</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Yaffe, Michael B</creator><creator>Leparc, German G</creator><creator>Lai, Jack</creator><creator>Obata, Toshiyuki</creator><creator>Volinia, Stefano</creator><creator>Cantley, Lewis C</creator><general>Nature Publishing Group US</general><general>Nature</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20010401</creationdate><title>A motif-based profile scanning approach for genome-wide prediction of signaling pathways</title><author>Yaffe, Michael B ; Leparc, German G ; Lai, Jack ; Obata, Toshiyuki ; Volinia, Stefano ; Cantley, Lewis C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-304fecf9362a888de9e19c06b7cd9d44d0eec9e4ba6dc667cb70a060c90bc0e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cattle</topic><topic>Cell physiology</topic><topic>Databases, Factual</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genome</topic><topic>Genomes</topic><topic>Humans</topic><topic>Internet</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>Peptides</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Publishing</topic><topic>Rats</topic><topic>Serine - chemistry</topic><topic>Signal Transduction</topic><topic>Software</topic><topic>Threonine - chemistry</topic><topic>Tyrosine - chemistry</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaffe, Michael B</creatorcontrib><creatorcontrib>Leparc, German G</creatorcontrib><creatorcontrib>Lai, Jack</creatorcontrib><creatorcontrib>Obata, Toshiyuki</creatorcontrib><creatorcontrib>Volinia, Stefano</creatorcontrib><creatorcontrib>Cantley, Lewis C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaffe, Michael B</au><au>Leparc, German G</au><au>Lai, Jack</au><au>Obata, Toshiyuki</au><au>Volinia, Stefano</au><au>Cantley, Lewis C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A motif-based profile scanning approach for genome-wide prediction of signaling pathways</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2001-04-01</date><risdate>2001</risdate><volume>19</volume><issue>4</issue><spage>348</spage><epage>353</epage><pages>348-353</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><coden>NABIF9</coden><abstract>The rapid increase in genomic information requires new techniques to infer protein function and predict protein–protein interactions. Bioinformatics identifies modular signaling domains within protein sequences with a high degree of accuracy. In contrast, little success has been achieved in predicting short linear sequence motifs within proteins targeted by these domains to form complex signaling networks. Here we describe a peptide library-based searching algorithm, accessible over the World Wide Web, that identifies sequence motifs likely to bind to specific protein domains such as 14-3-3, SH2, and SH3 domains, or likely to be phosphorylated by specific protein kinases such as Src and AKT. Predictions from database searches for proteins containing motifs matching two different domains in a common signaling pathway provides a much higher success rate. This technology facilitates prediction of cell signaling networks within proteomes, and could aid in the identification of drug targets for the treatment of human diseases.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>11283593</pmid><doi>10.1038/86737</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2001-04, Vol.19 (4), p.348-353 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_18160584 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | Agriculture Algorithms Amino Acid Motifs Amino Acid Sequence Amino acids Animals Binding sites Bioinformatics Biological and medical sciences Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Cattle Cell physiology Databases, Factual Fundamental and applied biological sciences. Psychology Genome Genomes Humans Internet Kinases Life Sciences Mice Molecular and cellular biology Molecular Sequence Data Peptides Phosphorylation Proteins Publishing Rats Serine - chemistry Signal Transduction Software Threonine - chemistry Tyrosine - chemistry World Wide Web |
title | A motif-based profile scanning approach for genome-wide prediction of signaling pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20motif-based%20profile%20scanning%20approach%20for%20genome-wide%20prediction%20of%20signaling%20pathways&rft.jtitle=Nature%20biotechnology&rft.au=Yaffe,%20Michael%20B&rft.date=2001-04-01&rft.volume=19&rft.issue=4&rft.spage=348&rft.epage=353&rft.pages=348-353&rft.issn=1087-0156&rft.eissn=1546-1696&rft.coden=NABIF9&rft_id=info:doi/10.1038/86737&rft_dat=%3Cgale_proqu%3EA190009415%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222288703&rft_id=info:pmid/11283593&rft_galeid=A190009415&rfr_iscdi=true |