Contributory Broadcast Encryption with Efficient Encryption and Short Ciphertexts
Broadcast encryption (BE) schemes allow a sender to securely broadcast to any subset of members but require a trusted party to distribute decryption keys. Group key agreement (GKA) protocols enable a group of members to negotiate a common encryption key via open networks so that only the group membe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2016-02, Vol.65 (2), p.466-479 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Broadcast encryption (BE) schemes allow a sender to securely broadcast to any subset of members but require a trusted party to distribute decryption keys. Group key agreement (GKA) protocols enable a group of members to negotiate a common encryption key via open networks so that only the group members can decrypt the ciphertexts encrypted under the shared encryption key, but a sender cannot exclude any particular member from decrypting the ciphertexts. In this paper, we bridge these two notions with a hybrid primitive referred to as contributory broadcast encryption (ConBE). In this new primitive, a group of members negotiate a common public encryption key while each member holds a decryption key. A sender seeing the public group encryption key can limit the decryption to a subset of members of his choice. Following this model, we propose a ConBE scheme with short ciphertexts. The scheme is proven to be fully collusion-resistant under the decision n-Bilinear Diffie-Hellman Exponentiation (BDHE) assumption in the standard model. Of independent interest, we present a new BE scheme that is aggregatable. The aggregatability property is shown to be useful to construct advanced protocols. |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/TC.2015.2419662 |