Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide

Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst′s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2016-05, Vol.9 (10), p.1085-1089
Hauptverfasser: Xu, Junyuan, Kan, Yuhe, Huang, Rui, Zhang, Bingsen, Wang, Bolun, Wu, Kuang-Hsu, Lin, Yangming, Sun, Xiaoyan, Li, Qingfeng, Centi, Gabriele, Su, Dangsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1089
container_issue 10
container_start_page 1085
container_title ChemSusChem
container_volume 9
creator Xu, Junyuan
Kan, Yuhe
Huang, Rui
Zhang, Bingsen
Wang, Bolun
Wu, Kuang-Hsu
Lin, Yangming
Sun, Xiaoyan
Li, Qingfeng
Centi, Gabriele
Su, Dangsheng
description Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst′s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate‐determining transfer of one electron to CO2, which leads to the formation of carbon dioxide radical anion (CO2.−). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen. That′s dope: Nitrogen‐doped carbon nanotubes are synthesized and studied as metal‐free catalysts for the electrocatalytic reduction of carbon dioxide. A detailed study combining spectroscopy, electrochemistry, and density functional theory gives insight into the role of nitrogen species and the reaction mechanism. The improved intrinsic activity of doped nanocarbon catalysts proves due to the stabilization of a key intermediate.
doi_str_mv 10.1002/cssc.201600202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816056023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4064805651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5512-792f07b1671fd34908b30d653decf1140480a69af6ad85c25112f70ce1c976033</originalsourceid><addsrcrecordid>eNqNkc9v0zAYhi0EYqNw5YgsceGS4h-xnRynbCuI0UltEdws13aKRxoX29nW_x5nHRXiAid_n_S8j-TvBeA1RlOMEHmvY9RTgjDPCyJPwCmueFkwXn57epwpPgEvYrxBiKOa8-fghIgxLMgpiAt7a1Xn-g1M3y28Dm7jeuhbeKaTu3VpD_M6dyn4je2Lc7-zBs5V77UKa99HmPydCibCi87qDGmVVLdPTsOFNUNW-AdZ80DDc-fvnbEvwbNWddG-enwn4Mvlxar5UFxdzz42Z1eFZgyTQtSkRWKNucCtoWWNqjVFhjNqrG4xLlFZIcVr1XJlKqYJw5i0AmmLdS04onQC3h28u-B_DjYmuXVR265TvfVDlLjKZ2Mckf9ARY0pYSyzE_D2L_TGD6HPHxkpxAhm9SicHigdfIzBtnIX3FaFvcRIjseXY3Py2FwOvHnUDuutNUf8d1UZqA_Anevs_h862SyXzZ_y4pB1Mdn7Y1aFH5ILKpj8Op_J1XJ2-Wm1EPIz_QXi_rNq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790521593</pqid></control><display><type>article</type><title>Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Junyuan ; Kan, Yuhe ; Huang, Rui ; Zhang, Bingsen ; Wang, Bolun ; Wu, Kuang-Hsu ; Lin, Yangming ; Sun, Xiaoyan ; Li, Qingfeng ; Centi, Gabriele ; Su, Dangsheng</creator><creatorcontrib>Xu, Junyuan ; Kan, Yuhe ; Huang, Rui ; Zhang, Bingsen ; Wang, Bolun ; Wu, Kuang-Hsu ; Lin, Yangming ; Sun, Xiaoyan ; Li, Qingfeng ; Centi, Gabriele ; Su, Dangsheng</creatorcontrib><description>Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst′s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate‐determining transfer of one electron to CO2, which leads to the formation of carbon dioxide radical anion (CO2.−). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen. That′s dope: Nitrogen‐doped carbon nanotubes are synthesized and studied as metal‐free catalysts for the electrocatalytic reduction of carbon dioxide. A detailed study combining spectroscopy, electrochemistry, and density functional theory gives insight into the role of nitrogen species and the reaction mechanism. The improved intrinsic activity of doped nanocarbon catalysts proves due to the stabilization of a key intermediate.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201600202</identifier><identifier>PMID: 27100272</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Anions ; Carbon dioxide ; Carbon Dioxide - chemistry ; Carbon nanotubes ; Catalysis ; Catalysts ; doping ; Electrochemistry ; Nanostructure ; Nanotubes, Carbon - chemistry ; Nitrogen ; Nitrogen - chemistry ; Nitrogen atoms ; Oxidation-Reduction ; Reduction</subject><ispartof>ChemSusChem, 2016-05, Vol.9 (10), p.1085-1089</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5512-792f07b1671fd34908b30d653decf1140480a69af6ad85c25112f70ce1c976033</citedby><cites>FETCH-LOGICAL-c5512-792f07b1671fd34908b30d653decf1140480a69af6ad85c25112f70ce1c976033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201600202$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201600202$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27100272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Junyuan</creatorcontrib><creatorcontrib>Kan, Yuhe</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhang, Bingsen</creatorcontrib><creatorcontrib>Wang, Bolun</creatorcontrib><creatorcontrib>Wu, Kuang-Hsu</creatorcontrib><creatorcontrib>Lin, Yangming</creatorcontrib><creatorcontrib>Sun, Xiaoyan</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Centi, Gabriele</creatorcontrib><creatorcontrib>Su, Dangsheng</creatorcontrib><title>Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst′s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate‐determining transfer of one electron to CO2, which leads to the formation of carbon dioxide radical anion (CO2.−). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen. That′s dope: Nitrogen‐doped carbon nanotubes are synthesized and studied as metal‐free catalysts for the electrocatalytic reduction of carbon dioxide. A detailed study combining spectroscopy, electrochemistry, and density functional theory gives insight into the role of nitrogen species and the reaction mechanism. The improved intrinsic activity of doped nanocarbon catalysts proves due to the stabilization of a key intermediate.</description><subject>Anions</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>doping</subject><subject>Electrochemistry</subject><subject>Nanostructure</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nitrogen</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogen atoms</subject><subject>Oxidation-Reduction</subject><subject>Reduction</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9v0zAYhi0EYqNw5YgsceGS4h-xnRynbCuI0UltEdws13aKRxoX29nW_x5nHRXiAid_n_S8j-TvBeA1RlOMEHmvY9RTgjDPCyJPwCmueFkwXn57epwpPgEvYrxBiKOa8-fghIgxLMgpiAt7a1Xn-g1M3y28Dm7jeuhbeKaTu3VpD_M6dyn4je2Lc7-zBs5V77UKa99HmPydCibCi87qDGmVVLdPTsOFNUNW-AdZ80DDc-fvnbEvwbNWddG-enwn4Mvlxar5UFxdzz42Z1eFZgyTQtSkRWKNucCtoWWNqjVFhjNqrG4xLlFZIcVr1XJlKqYJw5i0AmmLdS04onQC3h28u-B_DjYmuXVR265TvfVDlLjKZ2Mckf9ARY0pYSyzE_D2L_TGD6HPHxkpxAhm9SicHigdfIzBtnIX3FaFvcRIjseXY3Py2FwOvHnUDuutNUf8d1UZqA_Anevs_h862SyXzZ_y4pB1Mdn7Y1aFH5ILKpj8Op_J1XJ2-Wm1EPIz_QXi_rNq</recordid><startdate>20160523</startdate><enddate>20160523</enddate><creator>Xu, Junyuan</creator><creator>Kan, Yuhe</creator><creator>Huang, Rui</creator><creator>Zhang, Bingsen</creator><creator>Wang, Bolun</creator><creator>Wu, Kuang-Hsu</creator><creator>Lin, Yangming</creator><creator>Sun, Xiaoyan</creator><creator>Li, Qingfeng</creator><creator>Centi, Gabriele</creator><creator>Su, Dangsheng</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20160523</creationdate><title>Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide</title><author>Xu, Junyuan ; Kan, Yuhe ; Huang, Rui ; Zhang, Bingsen ; Wang, Bolun ; Wu, Kuang-Hsu ; Lin, Yangming ; Sun, Xiaoyan ; Li, Qingfeng ; Centi, Gabriele ; Su, Dangsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5512-792f07b1671fd34908b30d653decf1140480a69af6ad85c25112f70ce1c976033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anions</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>doping</topic><topic>Electrochemistry</topic><topic>Nanostructure</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nitrogen</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogen atoms</topic><topic>Oxidation-Reduction</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Junyuan</creatorcontrib><creatorcontrib>Kan, Yuhe</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhang, Bingsen</creatorcontrib><creatorcontrib>Wang, Bolun</creatorcontrib><creatorcontrib>Wu, Kuang-Hsu</creatorcontrib><creatorcontrib>Lin, Yangming</creatorcontrib><creatorcontrib>Sun, Xiaoyan</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Centi, Gabriele</creatorcontrib><creatorcontrib>Su, Dangsheng</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Junyuan</au><au>Kan, Yuhe</au><au>Huang, Rui</au><au>Zhang, Bingsen</au><au>Wang, Bolun</au><au>Wu, Kuang-Hsu</au><au>Lin, Yangming</au><au>Sun, Xiaoyan</au><au>Li, Qingfeng</au><au>Centi, Gabriele</au><au>Su, Dangsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2016-05-23</date><risdate>2016</risdate><volume>9</volume><issue>10</issue><spage>1085</spage><epage>1089</epage><pages>1085-1089</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst′s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate‐determining transfer of one electron to CO2, which leads to the formation of carbon dioxide radical anion (CO2.−). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen. That′s dope: Nitrogen‐doped carbon nanotubes are synthesized and studied as metal‐free catalysts for the electrocatalytic reduction of carbon dioxide. A detailed study combining spectroscopy, electrochemistry, and density functional theory gives insight into the role of nitrogen species and the reaction mechanism. The improved intrinsic activity of doped nanocarbon catalysts proves due to the stabilization of a key intermediate.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27100272</pmid><doi>10.1002/cssc.201600202</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2016-05, Vol.9 (10), p.1085-1089
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_1816056023
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Anions
Carbon dioxide
Carbon Dioxide - chemistry
Carbon nanotubes
Catalysis
Catalysts
doping
Electrochemistry
Nanostructure
Nanotubes, Carbon - chemistry
Nitrogen
Nitrogen - chemistry
Nitrogen atoms
Oxidation-Reduction
Reduction
title Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Origin%20of%20Activity%20in%20Nitrogen-Doped%20Nanocarbons%20towards%20Electrocatalytic%20Reduction%20of%20Carbon%20Dioxide&rft.jtitle=ChemSusChem&rft.au=Xu,%20Junyuan&rft.date=2016-05-23&rft.volume=9&rft.issue=10&rft.spage=1085&rft.epage=1089&rft.pages=1085-1089&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201600202&rft_dat=%3Cproquest_cross%3E4064805651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790521593&rft_id=info:pmid/27100272&rfr_iscdi=true