Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide
Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst′s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for C...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2016-05, Vol.9 (10), p.1085-1089 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1089 |
---|---|
container_issue | 10 |
container_start_page | 1085 |
container_title | ChemSusChem |
container_volume | 9 |
creator | Xu, Junyuan Kan, Yuhe Huang, Rui Zhang, Bingsen Wang, Bolun Wu, Kuang-Hsu Lin, Yangming Sun, Xiaoyan Li, Qingfeng Centi, Gabriele Su, Dangsheng |
description | Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst′s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate‐determining transfer of one electron to CO2, which leads to the formation of carbon dioxide radical anion (CO2.−). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen.
That′s dope: Nitrogen‐doped carbon nanotubes are synthesized and studied as metal‐free catalysts for the electrocatalytic reduction of carbon dioxide. A detailed study combining spectroscopy, electrochemistry, and density functional theory gives insight into the role of nitrogen species and the reaction mechanism. The improved intrinsic activity of doped nanocarbon catalysts proves due to the stabilization of a key intermediate. |
doi_str_mv | 10.1002/cssc.201600202 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816056023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4064805651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5512-792f07b1671fd34908b30d653decf1140480a69af6ad85c25112f70ce1c976033</originalsourceid><addsrcrecordid>eNqNkc9v0zAYhi0EYqNw5YgsceGS4h-xnRynbCuI0UltEdws13aKRxoX29nW_x5nHRXiAid_n_S8j-TvBeA1RlOMEHmvY9RTgjDPCyJPwCmueFkwXn57epwpPgEvYrxBiKOa8-fghIgxLMgpiAt7a1Xn-g1M3y28Dm7jeuhbeKaTu3VpD_M6dyn4je2Lc7-zBs5V77UKa99HmPydCibCi87qDGmVVLdPTsOFNUNW-AdZ80DDc-fvnbEvwbNWddG-enwn4Mvlxar5UFxdzz42Z1eFZgyTQtSkRWKNucCtoWWNqjVFhjNqrG4xLlFZIcVr1XJlKqYJw5i0AmmLdS04onQC3h28u-B_DjYmuXVR265TvfVDlLjKZ2Mckf9ARY0pYSyzE_D2L_TGD6HPHxkpxAhm9SicHigdfIzBtnIX3FaFvcRIjseXY3Py2FwOvHnUDuutNUf8d1UZqA_Anevs_h862SyXzZ_y4pB1Mdn7Y1aFH5ILKpj8Op_J1XJ2-Wm1EPIz_QXi_rNq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790521593</pqid></control><display><type>article</type><title>Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Junyuan ; Kan, Yuhe ; Huang, Rui ; Zhang, Bingsen ; Wang, Bolun ; Wu, Kuang-Hsu ; Lin, Yangming ; Sun, Xiaoyan ; Li, Qingfeng ; Centi, Gabriele ; Su, Dangsheng</creator><creatorcontrib>Xu, Junyuan ; Kan, Yuhe ; Huang, Rui ; Zhang, Bingsen ; Wang, Bolun ; Wu, Kuang-Hsu ; Lin, Yangming ; Sun, Xiaoyan ; Li, Qingfeng ; Centi, Gabriele ; Su, Dangsheng</creatorcontrib><description>Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst′s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate‐determining transfer of one electron to CO2, which leads to the formation of carbon dioxide radical anion (CO2.−). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen.
That′s dope: Nitrogen‐doped carbon nanotubes are synthesized and studied as metal‐free catalysts for the electrocatalytic reduction of carbon dioxide. A detailed study combining spectroscopy, electrochemistry, and density functional theory gives insight into the role of nitrogen species and the reaction mechanism. The improved intrinsic activity of doped nanocarbon catalysts proves due to the stabilization of a key intermediate.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201600202</identifier><identifier>PMID: 27100272</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Anions ; Carbon dioxide ; Carbon Dioxide - chemistry ; Carbon nanotubes ; Catalysis ; Catalysts ; doping ; Electrochemistry ; Nanostructure ; Nanotubes, Carbon - chemistry ; Nitrogen ; Nitrogen - chemistry ; Nitrogen atoms ; Oxidation-Reduction ; Reduction</subject><ispartof>ChemSusChem, 2016-05, Vol.9 (10), p.1085-1089</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5512-792f07b1671fd34908b30d653decf1140480a69af6ad85c25112f70ce1c976033</citedby><cites>FETCH-LOGICAL-c5512-792f07b1671fd34908b30d653decf1140480a69af6ad85c25112f70ce1c976033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201600202$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201600202$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27100272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Junyuan</creatorcontrib><creatorcontrib>Kan, Yuhe</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhang, Bingsen</creatorcontrib><creatorcontrib>Wang, Bolun</creatorcontrib><creatorcontrib>Wu, Kuang-Hsu</creatorcontrib><creatorcontrib>Lin, Yangming</creatorcontrib><creatorcontrib>Sun, Xiaoyan</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Centi, Gabriele</creatorcontrib><creatorcontrib>Su, Dangsheng</creatorcontrib><title>Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst′s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate‐determining transfer of one electron to CO2, which leads to the formation of carbon dioxide radical anion (CO2.−). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen.
That′s dope: Nitrogen‐doped carbon nanotubes are synthesized and studied as metal‐free catalysts for the electrocatalytic reduction of carbon dioxide. A detailed study combining spectroscopy, electrochemistry, and density functional theory gives insight into the role of nitrogen species and the reaction mechanism. The improved intrinsic activity of doped nanocarbon catalysts proves due to the stabilization of a key intermediate.</description><subject>Anions</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>doping</subject><subject>Electrochemistry</subject><subject>Nanostructure</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nitrogen</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogen atoms</subject><subject>Oxidation-Reduction</subject><subject>Reduction</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9v0zAYhi0EYqNw5YgsceGS4h-xnRynbCuI0UltEdws13aKRxoX29nW_x5nHRXiAid_n_S8j-TvBeA1RlOMEHmvY9RTgjDPCyJPwCmueFkwXn57epwpPgEvYrxBiKOa8-fghIgxLMgpiAt7a1Xn-g1M3y28Dm7jeuhbeKaTu3VpD_M6dyn4je2Lc7-zBs5V77UKa99HmPydCibCi87qDGmVVLdPTsOFNUNW-AdZ80DDc-fvnbEvwbNWddG-enwn4Mvlxar5UFxdzz42Z1eFZgyTQtSkRWKNucCtoWWNqjVFhjNqrG4xLlFZIcVr1XJlKqYJw5i0AmmLdS04onQC3h28u-B_DjYmuXVR265TvfVDlLjKZ2Mckf9ARY0pYSyzE_D2L_TGD6HPHxkpxAhm9SicHigdfIzBtnIX3FaFvcRIjseXY3Py2FwOvHnUDuutNUf8d1UZqA_Anevs_h862SyXzZ_y4pB1Mdn7Y1aFH5ILKpj8Op_J1XJ2-Wm1EPIz_QXi_rNq</recordid><startdate>20160523</startdate><enddate>20160523</enddate><creator>Xu, Junyuan</creator><creator>Kan, Yuhe</creator><creator>Huang, Rui</creator><creator>Zhang, Bingsen</creator><creator>Wang, Bolun</creator><creator>Wu, Kuang-Hsu</creator><creator>Lin, Yangming</creator><creator>Sun, Xiaoyan</creator><creator>Li, Qingfeng</creator><creator>Centi, Gabriele</creator><creator>Su, Dangsheng</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20160523</creationdate><title>Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide</title><author>Xu, Junyuan ; Kan, Yuhe ; Huang, Rui ; Zhang, Bingsen ; Wang, Bolun ; Wu, Kuang-Hsu ; Lin, Yangming ; Sun, Xiaoyan ; Li, Qingfeng ; Centi, Gabriele ; Su, Dangsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5512-792f07b1671fd34908b30d653decf1140480a69af6ad85c25112f70ce1c976033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anions</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>doping</topic><topic>Electrochemistry</topic><topic>Nanostructure</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nitrogen</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogen atoms</topic><topic>Oxidation-Reduction</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Junyuan</creatorcontrib><creatorcontrib>Kan, Yuhe</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhang, Bingsen</creatorcontrib><creatorcontrib>Wang, Bolun</creatorcontrib><creatorcontrib>Wu, Kuang-Hsu</creatorcontrib><creatorcontrib>Lin, Yangming</creatorcontrib><creatorcontrib>Sun, Xiaoyan</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Centi, Gabriele</creatorcontrib><creatorcontrib>Su, Dangsheng</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Junyuan</au><au>Kan, Yuhe</au><au>Huang, Rui</au><au>Zhang, Bingsen</au><au>Wang, Bolun</au><au>Wu, Kuang-Hsu</au><au>Lin, Yangming</au><au>Sun, Xiaoyan</au><au>Li, Qingfeng</au><au>Centi, Gabriele</au><au>Su, Dangsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2016-05-23</date><risdate>2016</risdate><volume>9</volume><issue>10</issue><spage>1085</spage><epage>1089</epage><pages>1085-1089</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst′s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate‐determining transfer of one electron to CO2, which leads to the formation of carbon dioxide radical anion (CO2.−). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen.
That′s dope: Nitrogen‐doped carbon nanotubes are synthesized and studied as metal‐free catalysts for the electrocatalytic reduction of carbon dioxide. A detailed study combining spectroscopy, electrochemistry, and density functional theory gives insight into the role of nitrogen species and the reaction mechanism. The improved intrinsic activity of doped nanocarbon catalysts proves due to the stabilization of a key intermediate.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27100272</pmid><doi>10.1002/cssc.201600202</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2016-05, Vol.9 (10), p.1085-1089 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_1816056023 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Anions Carbon dioxide Carbon Dioxide - chemistry Carbon nanotubes Catalysis Catalysts doping Electrochemistry Nanostructure Nanotubes, Carbon - chemistry Nitrogen Nitrogen - chemistry Nitrogen atoms Oxidation-Reduction Reduction |
title | Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Origin%20of%20Activity%20in%20Nitrogen-Doped%20Nanocarbons%20towards%20Electrocatalytic%20Reduction%20of%20Carbon%20Dioxide&rft.jtitle=ChemSusChem&rft.au=Xu,%20Junyuan&rft.date=2016-05-23&rft.volume=9&rft.issue=10&rft.spage=1085&rft.epage=1089&rft.pages=1085-1089&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201600202&rft_dat=%3Cproquest_cross%3E4064805651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790521593&rft_id=info:pmid/27100272&rfr_iscdi=true |