Unsteady natural convection with summer boundary conditions in a habitat at high Rayleigh number and at high time

•Thermal and dynamic fields of a habitat are numerically explored.•The study is done under summer conditions.•Convection had a late start.•The system became very unstable at high time once the convection developed.•There is a rapid change on the flow when the active and the cold walls are close. A n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2016-06, Vol.121, p.72-77
Hauptverfasser: Kpode, Kodjo, Sow, Mamadou L., Mbow, Cheikh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue
container_start_page 72
container_title Energy and buildings
container_volume 121
creator Kpode, Kodjo
Sow, Mamadou L.
Mbow, Cheikh
description •Thermal and dynamic fields of a habitat are numerically explored.•The study is done under summer conditions.•Convection had a late start.•The system became very unstable at high time once the convection developed.•There is a rapid change on the flow when the active and the cold walls are close. A numerical study of the thermoconvective instabilities at high time in a habitat filled with Newtonian fluid is conducted. The gable roof of the habitat is subjected to a heat flux of constant density, and its side walls and floor are, respectively, adiabatic and isothermal. Based on the Boussinesq assumptions, the summer thermal and dynamic conditions are numerically studied using unsteady natural convection equations formulated with vorticity and stream-function variables. The finite volume method is used to generate the set of equations, which are solved by the iterative under-relaxation line-by-line method of Gauss–Seidel. Sudden changes in the average Nusselt number and in the extreme values of the stream functions at Ra=1×108 show that the initially unicellular flow in a pseudo-conductive regime becomes a multicellular flow with the emergence and disappearance of cells. In time and space, the change of the flow behaviour is observed more rapidly if the active walls are close to the cold horizontal wall.
doi_str_mv 10.1016/j.enbuild.2016.03.068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816054608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778816302250</els_id><sourcerecordid>1790933339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-e34b008f5dd3b188c4aab8cc74ae1321408b641673f49795e5ae69cfea8954913</originalsourceid><addsrcrecordid>eNqFUU1rwzAMzWGDdd1-wsDHXZrZdRI7pzHKvmAwGOvZ-ENZXBKntZ2O_vs5tOxaIZDEe08gvSy7IzgnmFQPmxycGm1n8mUac0xzXPGLbIYp4wvGOL_KrkPYYIyrkpFZtlu7EEGaA3Iyjl52SA9uDzrawaFfG1sUxr4Hj9QwOiP9YcKNneCArEMStVLZKCNK2dqfFn3JQwdT48ZeJaF05h-Ltoeb7LKRXYDbU51n65fn79Xb4uPz9X319LHQlJVxAbRQGPOmNIYqwrkupFRca1ZIIHRJCsxVVZCK0aaoWV1CKaGqdQOS12VREzrP7o97t37YjRCi6G3Q0HXSwTAGQTipcFlUmJ-nshrXNEWdqOWRqv0QgodGbL3t018EwWJyQGzEyQExOSAwFcmBpHs86iCdvLfgRdAWnAZjffq2MIM9s-EPuNOVHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790933339</pqid></control><display><type>article</type><title>Unsteady natural convection with summer boundary conditions in a habitat at high Rayleigh number and at high time</title><source>Elsevier ScienceDirect Journals</source><creator>Kpode, Kodjo ; Sow, Mamadou L. ; Mbow, Cheikh</creator><creatorcontrib>Kpode, Kodjo ; Sow, Mamadou L. ; Mbow, Cheikh</creatorcontrib><description>•Thermal and dynamic fields of a habitat are numerically explored.•The study is done under summer conditions.•Convection had a late start.•The system became very unstable at high time once the convection developed.•There is a rapid change on the flow when the active and the cold walls are close. A numerical study of the thermoconvective instabilities at high time in a habitat filled with Newtonian fluid is conducted. The gable roof of the habitat is subjected to a heat flux of constant density, and its side walls and floor are, respectively, adiabatic and isothermal. Based on the Boussinesq assumptions, the summer thermal and dynamic conditions are numerically studied using unsteady natural convection equations formulated with vorticity and stream-function variables. The finite volume method is used to generate the set of equations, which are solved by the iterative under-relaxation line-by-line method of Gauss–Seidel. Sudden changes in the average Nusselt number and in the extreme values of the stream functions at Ra=1×108 show that the initially unicellular flow in a pseudo-conductive regime becomes a multicellular flow with the emergence and disappearance of cells. In time and space, the change of the flow behaviour is observed more rapidly if the active walls are close to the cold horizontal wall.</description><identifier>ISSN: 0378-7788</identifier><identifier>DOI: 10.1016/j.enbuild.2016.03.068</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adiabatic flow ; Boussinesq equations ; Convection ; Habitat ; Habitats ; Mathematical analysis ; Mathematical models ; Multicell flow ; Nusselt number ; Rayleigh number ; Unsteady ; Unsteady natural convection ; Walls</subject><ispartof>Energy and buildings, 2016-06, Vol.121, p.72-77</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-e34b008f5dd3b188c4aab8cc74ae1321408b641673f49795e5ae69cfea8954913</citedby><cites>FETCH-LOGICAL-c375t-e34b008f5dd3b188c4aab8cc74ae1321408b641673f49795e5ae69cfea8954913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378778816302250$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kpode, Kodjo</creatorcontrib><creatorcontrib>Sow, Mamadou L.</creatorcontrib><creatorcontrib>Mbow, Cheikh</creatorcontrib><title>Unsteady natural convection with summer boundary conditions in a habitat at high Rayleigh number and at high time</title><title>Energy and buildings</title><description>•Thermal and dynamic fields of a habitat are numerically explored.•The study is done under summer conditions.•Convection had a late start.•The system became very unstable at high time once the convection developed.•There is a rapid change on the flow when the active and the cold walls are close. A numerical study of the thermoconvective instabilities at high time in a habitat filled with Newtonian fluid is conducted. The gable roof of the habitat is subjected to a heat flux of constant density, and its side walls and floor are, respectively, adiabatic and isothermal. Based on the Boussinesq assumptions, the summer thermal and dynamic conditions are numerically studied using unsteady natural convection equations formulated with vorticity and stream-function variables. The finite volume method is used to generate the set of equations, which are solved by the iterative under-relaxation line-by-line method of Gauss–Seidel. Sudden changes in the average Nusselt number and in the extreme values of the stream functions at Ra=1×108 show that the initially unicellular flow in a pseudo-conductive regime becomes a multicellular flow with the emergence and disappearance of cells. In time and space, the change of the flow behaviour is observed more rapidly if the active walls are close to the cold horizontal wall.</description><subject>Adiabatic flow</subject><subject>Boussinesq equations</subject><subject>Convection</subject><subject>Habitat</subject><subject>Habitats</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multicell flow</subject><subject>Nusselt number</subject><subject>Rayleigh number</subject><subject>Unsteady</subject><subject>Unsteady natural convection</subject><subject>Walls</subject><issn>0378-7788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUU1rwzAMzWGDdd1-wsDHXZrZdRI7pzHKvmAwGOvZ-ENZXBKntZ2O_vs5tOxaIZDEe08gvSy7IzgnmFQPmxycGm1n8mUac0xzXPGLbIYp4wvGOL_KrkPYYIyrkpFZtlu7EEGaA3Iyjl52SA9uDzrawaFfG1sUxr4Hj9QwOiP9YcKNneCArEMStVLZKCNK2dqfFn3JQwdT48ZeJaF05h-Ltoeb7LKRXYDbU51n65fn79Xb4uPz9X319LHQlJVxAbRQGPOmNIYqwrkupFRca1ZIIHRJCsxVVZCK0aaoWV1CKaGqdQOS12VREzrP7o97t37YjRCi6G3Q0HXSwTAGQTipcFlUmJ-nshrXNEWdqOWRqv0QgodGbL3t018EwWJyQGzEyQExOSAwFcmBpHs86iCdvLfgRdAWnAZjffq2MIM9s-EPuNOVHQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Kpode, Kodjo</creator><creator>Sow, Mamadou L.</creator><creator>Mbow, Cheikh</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20160601</creationdate><title>Unsteady natural convection with summer boundary conditions in a habitat at high Rayleigh number and at high time</title><author>Kpode, Kodjo ; Sow, Mamadou L. ; Mbow, Cheikh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-e34b008f5dd3b188c4aab8cc74ae1321408b641673f49795e5ae69cfea8954913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adiabatic flow</topic><topic>Boussinesq equations</topic><topic>Convection</topic><topic>Habitat</topic><topic>Habitats</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multicell flow</topic><topic>Nusselt number</topic><topic>Rayleigh number</topic><topic>Unsteady</topic><topic>Unsteady natural convection</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kpode, Kodjo</creatorcontrib><creatorcontrib>Sow, Mamadou L.</creatorcontrib><creatorcontrib>Mbow, Cheikh</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kpode, Kodjo</au><au>Sow, Mamadou L.</au><au>Mbow, Cheikh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady natural convection with summer boundary conditions in a habitat at high Rayleigh number and at high time</atitle><jtitle>Energy and buildings</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>121</volume><spage>72</spage><epage>77</epage><pages>72-77</pages><issn>0378-7788</issn><abstract>•Thermal and dynamic fields of a habitat are numerically explored.•The study is done under summer conditions.•Convection had a late start.•The system became very unstable at high time once the convection developed.•There is a rapid change on the flow when the active and the cold walls are close. A numerical study of the thermoconvective instabilities at high time in a habitat filled with Newtonian fluid is conducted. The gable roof of the habitat is subjected to a heat flux of constant density, and its side walls and floor are, respectively, adiabatic and isothermal. Based on the Boussinesq assumptions, the summer thermal and dynamic conditions are numerically studied using unsteady natural convection equations formulated with vorticity and stream-function variables. The finite volume method is used to generate the set of equations, which are solved by the iterative under-relaxation line-by-line method of Gauss–Seidel. Sudden changes in the average Nusselt number and in the extreme values of the stream functions at Ra=1×108 show that the initially unicellular flow in a pseudo-conductive regime becomes a multicellular flow with the emergence and disappearance of cells. In time and space, the change of the flow behaviour is observed more rapidly if the active walls are close to the cold horizontal wall.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2016.03.068</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2016-06, Vol.121, p.72-77
issn 0378-7788
language eng
recordid cdi_proquest_miscellaneous_1816054608
source Elsevier ScienceDirect Journals
subjects Adiabatic flow
Boussinesq equations
Convection
Habitat
Habitats
Mathematical analysis
Mathematical models
Multicell flow
Nusselt number
Rayleigh number
Unsteady
Unsteady natural convection
Walls
title Unsteady natural convection with summer boundary conditions in a habitat at high Rayleigh number and at high time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20natural%20convection%20with%20summer%20boundary%20conditions%20in%20a%20habitat%20at%20high%20Rayleigh%20number%20and%20at%20high%20time&rft.jtitle=Energy%20and%20buildings&rft.au=Kpode,%20Kodjo&rft.date=2016-06-01&rft.volume=121&rft.spage=72&rft.epage=77&rft.pages=72-77&rft.issn=0378-7788&rft_id=info:doi/10.1016/j.enbuild.2016.03.068&rft_dat=%3Cproquest_cross%3E1790933339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790933339&rft_id=info:pmid/&rft_els_id=S0378778816302250&rfr_iscdi=true