Generalized modelling of cutting tool geometries for unified process simulation
This paper presents a generalized geometric model of cutting tools for the purpose of predicting the mechanics and dynamics of machining operations. The model starts by defining the tangent and rake face vectors at discrete elements along the cutting edge. The discrete cutting edge elements are asse...
Gespeichert in:
Veröffentlicht in: | International journal of machine tools & manufacture 2016-05, Vol.104, p.14-25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | |
container_start_page | 14 |
container_title | International journal of machine tools & manufacture |
container_volume | 104 |
creator | Kilic, Z.M. Altintas, Y. |
description | This paper presents a generalized geometric model of cutting tools for the purpose of predicting the mechanics and dynamics of machining operations. The model starts by defining the tangent and rake face vectors at discrete elements along the cutting edge. The discrete cutting edge elements are assembled mathematically to form either an insert or solid cutting edge, which are further transformed to design turning, boring, drilling, milling and other tools by considering the geometry and kinematics of cutting operations. Homogeneous transformation matrices are used to successively locate and orient the cutting edge within the insert, tool and process coordinate frames. Industry-standard tool-in-use planes are used to obtain the effective geometry for all cutting operations. In total 15 geometric parameters are used for identifying the geometry of an arbitrary tool. Radial and axial runouts are considered in the model. Generalized model is demonstrated by modelling the geometry of sample drills, indexable and serrated milling tools. The generalized model allows unified prediction of machining operations with one mathematical model which covers all operations and tool geometries.
•Geometry of indexable cutters and solid tools is modelled.•The general geometry model is valid for any metal cutting operation.•Industry-standard definitions are used for defining the geometrical parameters.•Homogeneous transformation matrices are used for locating the cutting edge.•The model is suitable for further simulation of forces, vibrations and surface errors. |
doi_str_mv | 10.1016/j.ijmachtools.2016.01.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816054545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890695516300062</els_id><sourcerecordid>1816054545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-439e2c0bf0b312d4cf6b3eba2b9df97258a0c251cf50e170c8d21b85242a24a93</originalsourceid><addsrcrecordid>eNqNUE1LxDAUDKLguvof6s1L60va9OMoi67Cwl70HNL0ZU1pmzVJBf31pqwHj_IO7_GYGWaGkFsKGQVa3veZ6Uep3oO1g89YfGVAM4DqjKxoXTUpoxWckxXUDaRlw_klufK-BwBa53RF9luc0MnBfGOXjLbDYTDTIbE6UXMIy7koJwe0IwZn0CfaumSejDaRcHRWofeJN-M8yGDsdE0utBw83vzuNXl7enzdPKe7_fZl87BLVc6LkBZ5g0xBq6HNKesKpcs2x1aytul0UzFeS1CMU6U5YEyg6o7RtuasYJIVssnX5O6kGy18zOiDGI1X0b2c0M5e0JqWwIs4EdqcoMpZ7x1qcXRmlO5LUBBLiaIXf0oUS4kCqIglRu7mxMWY5dOgE14ZnBR2xqEKorPmHyo__6WCog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816054545</pqid></control><display><type>article</type><title>Generalized modelling of cutting tool geometries for unified process simulation</title><source>Elsevier ScienceDirect Journals</source><creator>Kilic, Z.M. ; Altintas, Y.</creator><creatorcontrib>Kilic, Z.M. ; Altintas, Y.</creatorcontrib><description>This paper presents a generalized geometric model of cutting tools for the purpose of predicting the mechanics and dynamics of machining operations. The model starts by defining the tangent and rake face vectors at discrete elements along the cutting edge. The discrete cutting edge elements are assembled mathematically to form either an insert or solid cutting edge, which are further transformed to design turning, boring, drilling, milling and other tools by considering the geometry and kinematics of cutting operations. Homogeneous transformation matrices are used to successively locate and orient the cutting edge within the insert, tool and process coordinate frames. Industry-standard tool-in-use planes are used to obtain the effective geometry for all cutting operations. In total 15 geometric parameters are used for identifying the geometry of an arbitrary tool. Radial and axial runouts are considered in the model. Generalized model is demonstrated by modelling the geometry of sample drills, indexable and serrated milling tools. The generalized model allows unified prediction of machining operations with one mathematical model which covers all operations and tool geometries.
•Geometry of indexable cutters and solid tools is modelled.•The general geometry model is valid for any metal cutting operation.•Industry-standard definitions are used for defining the geometrical parameters.•Homogeneous transformation matrices are used for locating the cutting edge.•The model is suitable for further simulation of forces, vibrations and surface errors.</description><identifier>ISSN: 0890-6955</identifier><identifier>EISSN: 1879-2170</identifier><identifier>DOI: 10.1016/j.ijmachtools.2016.01.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cutting parameters ; Cutting tools ; Generalized model ; Inserts ; Machining ; Mathematical analysis ; Mathematical models ; Metal cutting ; Milling (machining) ; Modelling ; Process simulation ; Tool geometry</subject><ispartof>International journal of machine tools & manufacture, 2016-05, Vol.104, p.14-25</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-439e2c0bf0b312d4cf6b3eba2b9df97258a0c251cf50e170c8d21b85242a24a93</citedby><cites>FETCH-LOGICAL-c354t-439e2c0bf0b312d4cf6b3eba2b9df97258a0c251cf50e170c8d21b85242a24a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0890695516300062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kilic, Z.M.</creatorcontrib><creatorcontrib>Altintas, Y.</creatorcontrib><title>Generalized modelling of cutting tool geometries for unified process simulation</title><title>International journal of machine tools & manufacture</title><description>This paper presents a generalized geometric model of cutting tools for the purpose of predicting the mechanics and dynamics of machining operations. The model starts by defining the tangent and rake face vectors at discrete elements along the cutting edge. The discrete cutting edge elements are assembled mathematically to form either an insert or solid cutting edge, which are further transformed to design turning, boring, drilling, milling and other tools by considering the geometry and kinematics of cutting operations. Homogeneous transformation matrices are used to successively locate and orient the cutting edge within the insert, tool and process coordinate frames. Industry-standard tool-in-use planes are used to obtain the effective geometry for all cutting operations. In total 15 geometric parameters are used for identifying the geometry of an arbitrary tool. Radial and axial runouts are considered in the model. Generalized model is demonstrated by modelling the geometry of sample drills, indexable and serrated milling tools. The generalized model allows unified prediction of machining operations with one mathematical model which covers all operations and tool geometries.
•Geometry of indexable cutters and solid tools is modelled.•The general geometry model is valid for any metal cutting operation.•Industry-standard definitions are used for defining the geometrical parameters.•Homogeneous transformation matrices are used for locating the cutting edge.•The model is suitable for further simulation of forces, vibrations and surface errors.</description><subject>Cutting parameters</subject><subject>Cutting tools</subject><subject>Generalized model</subject><subject>Inserts</subject><subject>Machining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metal cutting</subject><subject>Milling (machining)</subject><subject>Modelling</subject><subject>Process simulation</subject><subject>Tool geometry</subject><issn>0890-6955</issn><issn>1879-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAUDKLguvof6s1L60va9OMoi67Cwl70HNL0ZU1pmzVJBf31pqwHj_IO7_GYGWaGkFsKGQVa3veZ6Uep3oO1g89YfGVAM4DqjKxoXTUpoxWckxXUDaRlw_klufK-BwBa53RF9luc0MnBfGOXjLbDYTDTIbE6UXMIy7koJwe0IwZn0CfaumSejDaRcHRWofeJN-M8yGDsdE0utBw83vzuNXl7enzdPKe7_fZl87BLVc6LkBZ5g0xBq6HNKesKpcs2x1aytul0UzFeS1CMU6U5YEyg6o7RtuasYJIVssnX5O6kGy18zOiDGI1X0b2c0M5e0JqWwIs4EdqcoMpZ7x1qcXRmlO5LUBBLiaIXf0oUS4kCqIglRu7mxMWY5dOgE14ZnBR2xqEKorPmHyo__6WCog</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Kilic, Z.M.</creator><creator>Altintas, Y.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201605</creationdate><title>Generalized modelling of cutting tool geometries for unified process simulation</title><author>Kilic, Z.M. ; Altintas, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-439e2c0bf0b312d4cf6b3eba2b9df97258a0c251cf50e170c8d21b85242a24a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cutting parameters</topic><topic>Cutting tools</topic><topic>Generalized model</topic><topic>Inserts</topic><topic>Machining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metal cutting</topic><topic>Milling (machining)</topic><topic>Modelling</topic><topic>Process simulation</topic><topic>Tool geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kilic, Z.M.</creatorcontrib><creatorcontrib>Altintas, Y.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of machine tools & manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kilic, Z.M.</au><au>Altintas, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized modelling of cutting tool geometries for unified process simulation</atitle><jtitle>International journal of machine tools & manufacture</jtitle><date>2016-05</date><risdate>2016</risdate><volume>104</volume><spage>14</spage><epage>25</epage><pages>14-25</pages><issn>0890-6955</issn><eissn>1879-2170</eissn><abstract>This paper presents a generalized geometric model of cutting tools for the purpose of predicting the mechanics and dynamics of machining operations. The model starts by defining the tangent and rake face vectors at discrete elements along the cutting edge. The discrete cutting edge elements are assembled mathematically to form either an insert or solid cutting edge, which are further transformed to design turning, boring, drilling, milling and other tools by considering the geometry and kinematics of cutting operations. Homogeneous transformation matrices are used to successively locate and orient the cutting edge within the insert, tool and process coordinate frames. Industry-standard tool-in-use planes are used to obtain the effective geometry for all cutting operations. In total 15 geometric parameters are used for identifying the geometry of an arbitrary tool. Radial and axial runouts are considered in the model. Generalized model is demonstrated by modelling the geometry of sample drills, indexable and serrated milling tools. The generalized model allows unified prediction of machining operations with one mathematical model which covers all operations and tool geometries.
•Geometry of indexable cutters and solid tools is modelled.•The general geometry model is valid for any metal cutting operation.•Industry-standard definitions are used for defining the geometrical parameters.•Homogeneous transformation matrices are used for locating the cutting edge.•The model is suitable for further simulation of forces, vibrations and surface errors.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmachtools.2016.01.007</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-6955 |
ispartof | International journal of machine tools & manufacture, 2016-05, Vol.104, p.14-25 |
issn | 0890-6955 1879-2170 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816054545 |
source | Elsevier ScienceDirect Journals |
subjects | Cutting parameters Cutting tools Generalized model Inserts Machining Mathematical analysis Mathematical models Metal cutting Milling (machining) Modelling Process simulation Tool geometry |
title | Generalized modelling of cutting tool geometries for unified process simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20modelling%20of%20cutting%20tool%20geometries%20for%20unified%20process%20simulation&rft.jtitle=International%20journal%20of%20machine%20tools%20&%20manufacture&rft.au=Kilic,%20Z.M.&rft.date=2016-05&rft.volume=104&rft.spage=14&rft.epage=25&rft.pages=14-25&rft.issn=0890-6955&rft.eissn=1879-2170&rft_id=info:doi/10.1016/j.ijmachtools.2016.01.007&rft_dat=%3Cproquest_cross%3E1816054545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816054545&rft_id=info:pmid/&rft_els_id=S0890695516300062&rfr_iscdi=true |