Generalized modelling of cutting tool geometries for unified process simulation

This paper presents a generalized geometric model of cutting tools for the purpose of predicting the mechanics and dynamics of machining operations. The model starts by defining the tangent and rake face vectors at discrete elements along the cutting edge. The discrete cutting edge elements are asse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine tools & manufacture 2016-05, Vol.104, p.14-25
Hauptverfasser: Kilic, Z.M., Altintas, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue
container_start_page 14
container_title International journal of machine tools & manufacture
container_volume 104
creator Kilic, Z.M.
Altintas, Y.
description This paper presents a generalized geometric model of cutting tools for the purpose of predicting the mechanics and dynamics of machining operations. The model starts by defining the tangent and rake face vectors at discrete elements along the cutting edge. The discrete cutting edge elements are assembled mathematically to form either an insert or solid cutting edge, which are further transformed to design turning, boring, drilling, milling and other tools by considering the geometry and kinematics of cutting operations. Homogeneous transformation matrices are used to successively locate and orient the cutting edge within the insert, tool and process coordinate frames. Industry-standard tool-in-use planes are used to obtain the effective geometry for all cutting operations. In total 15 geometric parameters are used for identifying the geometry of an arbitrary tool. Radial and axial runouts are considered in the model. Generalized model is demonstrated by modelling the geometry of sample drills, indexable and serrated milling tools. The generalized model allows unified prediction of machining operations with one mathematical model which covers all operations and tool geometries. •Geometry of indexable cutters and solid tools is modelled.•The general geometry model is valid for any metal cutting operation.•Industry-standard definitions are used for defining the geometrical parameters.•Homogeneous transformation matrices are used for locating the cutting edge.•The model is suitable for further simulation of forces, vibrations and surface errors.
doi_str_mv 10.1016/j.ijmachtools.2016.01.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816054545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890695516300062</els_id><sourcerecordid>1816054545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-439e2c0bf0b312d4cf6b3eba2b9df97258a0c251cf50e170c8d21b85242a24a93</originalsourceid><addsrcrecordid>eNqNUE1LxDAUDKLguvof6s1L60va9OMoi67Cwl70HNL0ZU1pmzVJBf31pqwHj_IO7_GYGWaGkFsKGQVa3veZ6Uep3oO1g89YfGVAM4DqjKxoXTUpoxWckxXUDaRlw_klufK-BwBa53RF9luc0MnBfGOXjLbDYTDTIbE6UXMIy7koJwe0IwZn0CfaumSejDaRcHRWofeJN-M8yGDsdE0utBw83vzuNXl7enzdPKe7_fZl87BLVc6LkBZ5g0xBq6HNKesKpcs2x1aytul0UzFeS1CMU6U5YEyg6o7RtuasYJIVssnX5O6kGy18zOiDGI1X0b2c0M5e0JqWwIs4EdqcoMpZ7x1qcXRmlO5LUBBLiaIXf0oUS4kCqIglRu7mxMWY5dOgE14ZnBR2xqEKorPmHyo__6WCog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816054545</pqid></control><display><type>article</type><title>Generalized modelling of cutting tool geometries for unified process simulation</title><source>Elsevier ScienceDirect Journals</source><creator>Kilic, Z.M. ; Altintas, Y.</creator><creatorcontrib>Kilic, Z.M. ; Altintas, Y.</creatorcontrib><description>This paper presents a generalized geometric model of cutting tools for the purpose of predicting the mechanics and dynamics of machining operations. The model starts by defining the tangent and rake face vectors at discrete elements along the cutting edge. The discrete cutting edge elements are assembled mathematically to form either an insert or solid cutting edge, which are further transformed to design turning, boring, drilling, milling and other tools by considering the geometry and kinematics of cutting operations. Homogeneous transformation matrices are used to successively locate and orient the cutting edge within the insert, tool and process coordinate frames. Industry-standard tool-in-use planes are used to obtain the effective geometry for all cutting operations. In total 15 geometric parameters are used for identifying the geometry of an arbitrary tool. Radial and axial runouts are considered in the model. Generalized model is demonstrated by modelling the geometry of sample drills, indexable and serrated milling tools. The generalized model allows unified prediction of machining operations with one mathematical model which covers all operations and tool geometries. •Geometry of indexable cutters and solid tools is modelled.•The general geometry model is valid for any metal cutting operation.•Industry-standard definitions are used for defining the geometrical parameters.•Homogeneous transformation matrices are used for locating the cutting edge.•The model is suitable for further simulation of forces, vibrations and surface errors.</description><identifier>ISSN: 0890-6955</identifier><identifier>EISSN: 1879-2170</identifier><identifier>DOI: 10.1016/j.ijmachtools.2016.01.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cutting parameters ; Cutting tools ; Generalized model ; Inserts ; Machining ; Mathematical analysis ; Mathematical models ; Metal cutting ; Milling (machining) ; Modelling ; Process simulation ; Tool geometry</subject><ispartof>International journal of machine tools &amp; manufacture, 2016-05, Vol.104, p.14-25</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-439e2c0bf0b312d4cf6b3eba2b9df97258a0c251cf50e170c8d21b85242a24a93</citedby><cites>FETCH-LOGICAL-c354t-439e2c0bf0b312d4cf6b3eba2b9df97258a0c251cf50e170c8d21b85242a24a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0890695516300062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kilic, Z.M.</creatorcontrib><creatorcontrib>Altintas, Y.</creatorcontrib><title>Generalized modelling of cutting tool geometries for unified process simulation</title><title>International journal of machine tools &amp; manufacture</title><description>This paper presents a generalized geometric model of cutting tools for the purpose of predicting the mechanics and dynamics of machining operations. The model starts by defining the tangent and rake face vectors at discrete elements along the cutting edge. The discrete cutting edge elements are assembled mathematically to form either an insert or solid cutting edge, which are further transformed to design turning, boring, drilling, milling and other tools by considering the geometry and kinematics of cutting operations. Homogeneous transformation matrices are used to successively locate and orient the cutting edge within the insert, tool and process coordinate frames. Industry-standard tool-in-use planes are used to obtain the effective geometry for all cutting operations. In total 15 geometric parameters are used for identifying the geometry of an arbitrary tool. Radial and axial runouts are considered in the model. Generalized model is demonstrated by modelling the geometry of sample drills, indexable and serrated milling tools. The generalized model allows unified prediction of machining operations with one mathematical model which covers all operations and tool geometries. •Geometry of indexable cutters and solid tools is modelled.•The general geometry model is valid for any metal cutting operation.•Industry-standard definitions are used for defining the geometrical parameters.•Homogeneous transformation matrices are used for locating the cutting edge.•The model is suitable for further simulation of forces, vibrations and surface errors.</description><subject>Cutting parameters</subject><subject>Cutting tools</subject><subject>Generalized model</subject><subject>Inserts</subject><subject>Machining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metal cutting</subject><subject>Milling (machining)</subject><subject>Modelling</subject><subject>Process simulation</subject><subject>Tool geometry</subject><issn>0890-6955</issn><issn>1879-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAUDKLguvof6s1L60va9OMoi67Cwl70HNL0ZU1pmzVJBf31pqwHj_IO7_GYGWaGkFsKGQVa3veZ6Uep3oO1g89YfGVAM4DqjKxoXTUpoxWckxXUDaRlw_klufK-BwBa53RF9luc0MnBfGOXjLbDYTDTIbE6UXMIy7koJwe0IwZn0CfaumSejDaRcHRWofeJN-M8yGDsdE0utBw83vzuNXl7enzdPKe7_fZl87BLVc6LkBZ5g0xBq6HNKesKpcs2x1aytul0UzFeS1CMU6U5YEyg6o7RtuasYJIVssnX5O6kGy18zOiDGI1X0b2c0M5e0JqWwIs4EdqcoMpZ7x1qcXRmlO5LUBBLiaIXf0oUS4kCqIglRu7mxMWY5dOgE14ZnBR2xqEKorPmHyo__6WCog</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Kilic, Z.M.</creator><creator>Altintas, Y.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201605</creationdate><title>Generalized modelling of cutting tool geometries for unified process simulation</title><author>Kilic, Z.M. ; Altintas, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-439e2c0bf0b312d4cf6b3eba2b9df97258a0c251cf50e170c8d21b85242a24a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cutting parameters</topic><topic>Cutting tools</topic><topic>Generalized model</topic><topic>Inserts</topic><topic>Machining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metal cutting</topic><topic>Milling (machining)</topic><topic>Modelling</topic><topic>Process simulation</topic><topic>Tool geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kilic, Z.M.</creatorcontrib><creatorcontrib>Altintas, Y.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of machine tools &amp; manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kilic, Z.M.</au><au>Altintas, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized modelling of cutting tool geometries for unified process simulation</atitle><jtitle>International journal of machine tools &amp; manufacture</jtitle><date>2016-05</date><risdate>2016</risdate><volume>104</volume><spage>14</spage><epage>25</epage><pages>14-25</pages><issn>0890-6955</issn><eissn>1879-2170</eissn><abstract>This paper presents a generalized geometric model of cutting tools for the purpose of predicting the mechanics and dynamics of machining operations. The model starts by defining the tangent and rake face vectors at discrete elements along the cutting edge. The discrete cutting edge elements are assembled mathematically to form either an insert or solid cutting edge, which are further transformed to design turning, boring, drilling, milling and other tools by considering the geometry and kinematics of cutting operations. Homogeneous transformation matrices are used to successively locate and orient the cutting edge within the insert, tool and process coordinate frames. Industry-standard tool-in-use planes are used to obtain the effective geometry for all cutting operations. In total 15 geometric parameters are used for identifying the geometry of an arbitrary tool. Radial and axial runouts are considered in the model. Generalized model is demonstrated by modelling the geometry of sample drills, indexable and serrated milling tools. The generalized model allows unified prediction of machining operations with one mathematical model which covers all operations and tool geometries. •Geometry of indexable cutters and solid tools is modelled.•The general geometry model is valid for any metal cutting operation.•Industry-standard definitions are used for defining the geometrical parameters.•Homogeneous transformation matrices are used for locating the cutting edge.•The model is suitable for further simulation of forces, vibrations and surface errors.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmachtools.2016.01.007</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-6955
ispartof International journal of machine tools & manufacture, 2016-05, Vol.104, p.14-25
issn 0890-6955
1879-2170
language eng
recordid cdi_proquest_miscellaneous_1816054545
source Elsevier ScienceDirect Journals
subjects Cutting parameters
Cutting tools
Generalized model
Inserts
Machining
Mathematical analysis
Mathematical models
Metal cutting
Milling (machining)
Modelling
Process simulation
Tool geometry
title Generalized modelling of cutting tool geometries for unified process simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20modelling%20of%20cutting%20tool%20geometries%20for%20unified%20process%20simulation&rft.jtitle=International%20journal%20of%20machine%20tools%20&%20manufacture&rft.au=Kilic,%20Z.M.&rft.date=2016-05&rft.volume=104&rft.spage=14&rft.epage=25&rft.pages=14-25&rft.issn=0890-6955&rft.eissn=1879-2170&rft_id=info:doi/10.1016/j.ijmachtools.2016.01.007&rft_dat=%3Cproquest_cross%3E1816054545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816054545&rft_id=info:pmid/&rft_els_id=S0890695516300062&rfr_iscdi=true