In silico investigation of vertebroplasty as a stand-alone treatment for vertebral burst fractures

Abstract Background The use of percutaneous vertebroplasty as a stand-alone treatment for stable vertebral burst fractures has been investigated in vitro and in clinical studies. These studies present inconsistent results on the mechanical response of vertebroplasty-treated burst fractures. In addit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical biomechanics (Bristol) 2016-05, Vol.34, p.53-61
Hauptverfasser: Koh, Ilsoo, Marini, Giacomo, Widmer, René P, Brandolini, Nicola, Helgason, Benedikt, Ferguson, Stephen J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue
container_start_page 53
container_title Clinical biomechanics (Bristol)
container_volume 34
creator Koh, Ilsoo
Marini, Giacomo
Widmer, René P
Brandolini, Nicola
Helgason, Benedikt
Ferguson, Stephen J
description Abstract Background The use of percutaneous vertebroplasty as a stand-alone treatment for stable vertebral burst fractures has been investigated in vitro and in clinical studies. These studies present inconsistent results on the mechanical response of vertebroplasty-treated burst fractures. In addition, observations of the loss of sagittal alignment after vertebroplasty raise questions on the applicability of vertebroplasty for burst fractures. Therefore, the aim of this study was to investigate the mechanical stability of burst fractures after stand-alone treatment by vertebroplasty. Methods Finite element simulations were performed with models generated from two laboratory-induced burst fractures in human throracolumbar specimens. The burst fracture models were virtually injected with various cement volumes using a unipedicular or bipedicular approach. The models were subjected to four individual loads (compression, lateral bending, extension and torsion) and a multi-axial load case in the physiological range. Findings All treated burst fractures showed improvements in stiffness and a reduction in inter-fragmentary displacements, thus potentially providing a suitable mechanical environment for fracture healing. However, large volumes of the trabecular bone (< 43%), cement (< 53%) and bone-cement composite (< 58%) were predicted to experience strain levels exceeding the yield point. While damage was not specifically modeled, this implies a potential collapse of the treated vertebra due to local failure. Interpretation To improve the primary stability and to prevent the collapse of treated burst fractures, the use of posterior instrumentation is suggested as an adjunct to vertebroplasty.
doi_str_mv 10.1016/j.clinbiomech.2016.03.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816049827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0268003316300237</els_id><sourcerecordid>1784461385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-1035e83db74a8e8b916a8b0e454396ae43affd4f54e3b8a2693fb4dd486524a53</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7rj6FyTevHRb-eju9EWQwY-FBQ_qOSTpas3YnYxJemD-vd3MrogX9xQonqo3yVOEvGJQM2Dtm0PtJh-sjzO6HzVfSzWIGkA9Ijumur5ivGOPyQ54qyoAIa7Is5wPACB50z0lV7yDDpRsdsTeBJr95F2kPpwwF__dFB8DjSM9YSpoUzxOJpczNZkamosJQ2WmGJCWhKbMGAodY7qnzUTtkvJaS8aVJWF-Tp6MZsr44u68Jt8-vP-6_1Tdfv54s393WznZq1IxEA0qMdhOGoXK9qw1ygLKRoq-NSiFGcdBjo1EYZXhbS9GK4dBqrbh0jTimry-zD2m-GtZn6Jnnx1OkwkYl6yZYi2sUbx7CMp6UCDb_6OdkrJlQm0X6C-oSzHnhKM-Jj-bdNYM9CZOH_Rf4vQmToPQq7i19-VdzGJnHP503ptagf0FwPULTx6Tzs5jcDj4hK7oIfoHxbz9Z8pGememn3jGfIhLCqsjzXTmGvSXbYO2BWKtAOCiE78ByqDFAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784461385</pqid></control><display><type>article</type><title>In silico investigation of vertebroplasty as a stand-alone treatment for vertebral burst fractures</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Koh, Ilsoo ; Marini, Giacomo ; Widmer, René P ; Brandolini, Nicola ; Helgason, Benedikt ; Ferguson, Stephen J</creator><creatorcontrib>Koh, Ilsoo ; Marini, Giacomo ; Widmer, René P ; Brandolini, Nicola ; Helgason, Benedikt ; Ferguson, Stephen J</creatorcontrib><description>Abstract Background The use of percutaneous vertebroplasty as a stand-alone treatment for stable vertebral burst fractures has been investigated in vitro and in clinical studies. These studies present inconsistent results on the mechanical response of vertebroplasty-treated burst fractures. In addition, observations of the loss of sagittal alignment after vertebroplasty raise questions on the applicability of vertebroplasty for burst fractures. Therefore, the aim of this study was to investigate the mechanical stability of burst fractures after stand-alone treatment by vertebroplasty. Methods Finite element simulations were performed with models generated from two laboratory-induced burst fractures in human throracolumbar specimens. The burst fracture models were virtually injected with various cement volumes using a unipedicular or bipedicular approach. The models were subjected to four individual loads (compression, lateral bending, extension and torsion) and a multi-axial load case in the physiological range. Findings All treated burst fractures showed improvements in stiffness and a reduction in inter-fragmentary displacements, thus potentially providing a suitable mechanical environment for fracture healing. However, large volumes of the trabecular bone (&lt; 43%), cement (&lt; 53%) and bone-cement composite (&lt; 58%) were predicted to experience strain levels exceeding the yield point. While damage was not specifically modeled, this implies a potential collapse of the treated vertebra due to local failure. Interpretation To improve the primary stability and to prevent the collapse of treated burst fractures, the use of posterior instrumentation is suggested as an adjunct to vertebroplasty.</description><identifier>ISSN: 0268-0033</identifier><identifier>EISSN: 1879-1271</identifier><identifier>DOI: 10.1016/j.clinbiomech.2016.03.008</identifier><identifier>PMID: 27070845</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Aged ; Biomechanics ; Bone Cements - therapeutic use ; Bones ; Burst fracture ; Bursting ; Cements ; Collapse ; Computer Simulation ; Female ; Finite Element Analysis ; Finite-element ; Fracture Fixation, Internal - methods ; Fracture mechanics ; Humans ; Lumbar Vertebrae - injuries ; Lumbar Vertebrae - physiopathology ; Lumbar Vertebrae - surgery ; Mathematical models ; Medical services ; Physical Medicine and Rehabilitation ; Spinal Fractures - physiopathology ; Spinal Fractures - surgery ; Stability ; Stress, Mechanical ; Thoracic Vertebrae - injuries ; Thoracic Vertebrae - physiopathology ; Thoracic Vertebrae - surgery ; Vertebroplasty ; Vertebroplasty - methods</subject><ispartof>Clinical biomechanics (Bristol), 2016-05, Vol.34, p.53-61</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-1035e83db74a8e8b916a8b0e454396ae43affd4f54e3b8a2693fb4dd486524a53</citedby><cites>FETCH-LOGICAL-c498t-1035e83db74a8e8b916a8b0e454396ae43affd4f54e3b8a2693fb4dd486524a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.clinbiomech.2016.03.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27070845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koh, Ilsoo</creatorcontrib><creatorcontrib>Marini, Giacomo</creatorcontrib><creatorcontrib>Widmer, René P</creatorcontrib><creatorcontrib>Brandolini, Nicola</creatorcontrib><creatorcontrib>Helgason, Benedikt</creatorcontrib><creatorcontrib>Ferguson, Stephen J</creatorcontrib><title>In silico investigation of vertebroplasty as a stand-alone treatment for vertebral burst fractures</title><title>Clinical biomechanics (Bristol)</title><addtitle>Clin Biomech (Bristol, Avon)</addtitle><description>Abstract Background The use of percutaneous vertebroplasty as a stand-alone treatment for stable vertebral burst fractures has been investigated in vitro and in clinical studies. These studies present inconsistent results on the mechanical response of vertebroplasty-treated burst fractures. In addition, observations of the loss of sagittal alignment after vertebroplasty raise questions on the applicability of vertebroplasty for burst fractures. Therefore, the aim of this study was to investigate the mechanical stability of burst fractures after stand-alone treatment by vertebroplasty. Methods Finite element simulations were performed with models generated from two laboratory-induced burst fractures in human throracolumbar specimens. The burst fracture models were virtually injected with various cement volumes using a unipedicular or bipedicular approach. The models were subjected to four individual loads (compression, lateral bending, extension and torsion) and a multi-axial load case in the physiological range. Findings All treated burst fractures showed improvements in stiffness and a reduction in inter-fragmentary displacements, thus potentially providing a suitable mechanical environment for fracture healing. However, large volumes of the trabecular bone (&lt; 43%), cement (&lt; 53%) and bone-cement composite (&lt; 58%) were predicted to experience strain levels exceeding the yield point. While damage was not specifically modeled, this implies a potential collapse of the treated vertebra due to local failure. Interpretation To improve the primary stability and to prevent the collapse of treated burst fractures, the use of posterior instrumentation is suggested as an adjunct to vertebroplasty.</description><subject>Aged</subject><subject>Biomechanics</subject><subject>Bone Cements - therapeutic use</subject><subject>Bones</subject><subject>Burst fracture</subject><subject>Bursting</subject><subject>Cements</subject><subject>Collapse</subject><subject>Computer Simulation</subject><subject>Female</subject><subject>Finite Element Analysis</subject><subject>Finite-element</subject><subject>Fracture Fixation, Internal - methods</subject><subject>Fracture mechanics</subject><subject>Humans</subject><subject>Lumbar Vertebrae - injuries</subject><subject>Lumbar Vertebrae - physiopathology</subject><subject>Lumbar Vertebrae - surgery</subject><subject>Mathematical models</subject><subject>Medical services</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Spinal Fractures - physiopathology</subject><subject>Spinal Fractures - surgery</subject><subject>Stability</subject><subject>Stress, Mechanical</subject><subject>Thoracic Vertebrae - injuries</subject><subject>Thoracic Vertebrae - physiopathology</subject><subject>Thoracic Vertebrae - surgery</subject><subject>Vertebroplasty</subject><subject>Vertebroplasty - methods</subject><issn>0268-0033</issn><issn>1879-1271</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk2LFDEQhoMo7rj6FyTevHRb-eju9EWQwY-FBQ_qOSTpas3YnYxJemD-vd3MrogX9xQonqo3yVOEvGJQM2Dtm0PtJh-sjzO6HzVfSzWIGkA9Ijumur5ivGOPyQ54qyoAIa7Is5wPACB50z0lV7yDDpRsdsTeBJr95F2kPpwwF__dFB8DjSM9YSpoUzxOJpczNZkamosJQ2WmGJCWhKbMGAodY7qnzUTtkvJaS8aVJWF-Tp6MZsr44u68Jt8-vP-6_1Tdfv54s393WznZq1IxEA0qMdhOGoXK9qw1ygLKRoq-NSiFGcdBjo1EYZXhbS9GK4dBqrbh0jTimry-zD2m-GtZn6Jnnx1OkwkYl6yZYi2sUbx7CMp6UCDb_6OdkrJlQm0X6C-oSzHnhKM-Jj-bdNYM9CZOH_Rf4vQmToPQq7i19-VdzGJnHP503ptagf0FwPULTx6Tzs5jcDj4hK7oIfoHxbz9Z8pGememn3jGfIhLCqsjzXTmGvSXbYO2BWKtAOCiE78ByqDFAw</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Koh, Ilsoo</creator><creator>Marini, Giacomo</creator><creator>Widmer, René P</creator><creator>Brandolini, Nicola</creator><creator>Helgason, Benedikt</creator><creator>Ferguson, Stephen J</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20160501</creationdate><title>In silico investigation of vertebroplasty as a stand-alone treatment for vertebral burst fractures</title><author>Koh, Ilsoo ; Marini, Giacomo ; Widmer, René P ; Brandolini, Nicola ; Helgason, Benedikt ; Ferguson, Stephen J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-1035e83db74a8e8b916a8b0e454396ae43affd4f54e3b8a2693fb4dd486524a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aged</topic><topic>Biomechanics</topic><topic>Bone Cements - therapeutic use</topic><topic>Bones</topic><topic>Burst fracture</topic><topic>Bursting</topic><topic>Cements</topic><topic>Collapse</topic><topic>Computer Simulation</topic><topic>Female</topic><topic>Finite Element Analysis</topic><topic>Finite-element</topic><topic>Fracture Fixation, Internal - methods</topic><topic>Fracture mechanics</topic><topic>Humans</topic><topic>Lumbar Vertebrae - injuries</topic><topic>Lumbar Vertebrae - physiopathology</topic><topic>Lumbar Vertebrae - surgery</topic><topic>Mathematical models</topic><topic>Medical services</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Spinal Fractures - physiopathology</topic><topic>Spinal Fractures - surgery</topic><topic>Stability</topic><topic>Stress, Mechanical</topic><topic>Thoracic Vertebrae - injuries</topic><topic>Thoracic Vertebrae - physiopathology</topic><topic>Thoracic Vertebrae - surgery</topic><topic>Vertebroplasty</topic><topic>Vertebroplasty - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koh, Ilsoo</creatorcontrib><creatorcontrib>Marini, Giacomo</creatorcontrib><creatorcontrib>Widmer, René P</creatorcontrib><creatorcontrib>Brandolini, Nicola</creatorcontrib><creatorcontrib>Helgason, Benedikt</creatorcontrib><creatorcontrib>Ferguson, Stephen J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Physical Education Index</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Clinical biomechanics (Bristol)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koh, Ilsoo</au><au>Marini, Giacomo</au><au>Widmer, René P</au><au>Brandolini, Nicola</au><au>Helgason, Benedikt</au><au>Ferguson, Stephen J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico investigation of vertebroplasty as a stand-alone treatment for vertebral burst fractures</atitle><jtitle>Clinical biomechanics (Bristol)</jtitle><addtitle>Clin Biomech (Bristol, Avon)</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>34</volume><spage>53</spage><epage>61</epage><pages>53-61</pages><issn>0268-0033</issn><eissn>1879-1271</eissn><abstract>Abstract Background The use of percutaneous vertebroplasty as a stand-alone treatment for stable vertebral burst fractures has been investigated in vitro and in clinical studies. These studies present inconsistent results on the mechanical response of vertebroplasty-treated burst fractures. In addition, observations of the loss of sagittal alignment after vertebroplasty raise questions on the applicability of vertebroplasty for burst fractures. Therefore, the aim of this study was to investigate the mechanical stability of burst fractures after stand-alone treatment by vertebroplasty. Methods Finite element simulations were performed with models generated from two laboratory-induced burst fractures in human throracolumbar specimens. The burst fracture models were virtually injected with various cement volumes using a unipedicular or bipedicular approach. The models were subjected to four individual loads (compression, lateral bending, extension and torsion) and a multi-axial load case in the physiological range. Findings All treated burst fractures showed improvements in stiffness and a reduction in inter-fragmentary displacements, thus potentially providing a suitable mechanical environment for fracture healing. However, large volumes of the trabecular bone (&lt; 43%), cement (&lt; 53%) and bone-cement composite (&lt; 58%) were predicted to experience strain levels exceeding the yield point. While damage was not specifically modeled, this implies a potential collapse of the treated vertebra due to local failure. Interpretation To improve the primary stability and to prevent the collapse of treated burst fractures, the use of posterior instrumentation is suggested as an adjunct to vertebroplasty.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27070845</pmid><doi>10.1016/j.clinbiomech.2016.03.008</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-0033
ispartof Clinical biomechanics (Bristol), 2016-05, Vol.34, p.53-61
issn 0268-0033
1879-1271
language eng
recordid cdi_proquest_miscellaneous_1816049827
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Aged
Biomechanics
Bone Cements - therapeutic use
Bones
Burst fracture
Bursting
Cements
Collapse
Computer Simulation
Female
Finite Element Analysis
Finite-element
Fracture Fixation, Internal - methods
Fracture mechanics
Humans
Lumbar Vertebrae - injuries
Lumbar Vertebrae - physiopathology
Lumbar Vertebrae - surgery
Mathematical models
Medical services
Physical Medicine and Rehabilitation
Spinal Fractures - physiopathology
Spinal Fractures - surgery
Stability
Stress, Mechanical
Thoracic Vertebrae - injuries
Thoracic Vertebrae - physiopathology
Thoracic Vertebrae - surgery
Vertebroplasty
Vertebroplasty - methods
title In silico investigation of vertebroplasty as a stand-alone treatment for vertebral burst fractures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20investigation%20of%20vertebroplasty%20as%20a%20stand-alone%20treatment%20for%20vertebral%20burst%20fractures&rft.jtitle=Clinical%20biomechanics%20(Bristol)&rft.au=Koh,%20Ilsoo&rft.date=2016-05-01&rft.volume=34&rft.spage=53&rft.epage=61&rft.pages=53-61&rft.issn=0268-0033&rft.eissn=1879-1271&rft_id=info:doi/10.1016/j.clinbiomech.2016.03.008&rft_dat=%3Cproquest_cross%3E1784461385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784461385&rft_id=info:pmid/27070845&rft_els_id=1_s2_0_S0268003316300237&rfr_iscdi=true