Deriving snow-cover depletion curves for different spatial scales from remote sensing and snow telemetry data

During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow‐covered area (SCA) once snow‐free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2016-05, Vol.30 (11), p.1708-1717
Hauptverfasser: Fassnacht, Steven R., Sexstone, Graham A., Kashipazha, Amir H., López-Moreno, Juan Ignacio, Jasinski, Michael F., Kampf, Stephanie K., Von Thaden, Benjamin C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1717
container_issue 11
container_start_page 1708
container_title Hydrological processes
container_volume 30
creator Fassnacht, Steven R.
Sexstone, Graham A.
Kashipazha, Amir H.
López-Moreno, Juan Ignacio
Jasinski, Michael F.
Kampf, Stephanie K.
Von Thaden, Benjamin C.
description During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow‐covered area (SCA) once snow‐free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate‐resolution imaging spectroradiometer images to produce snow‐cover depletion curves. The snow depletion curves were created for an 80 000 km2 domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow‐cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A station's peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter‐annual consistency. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/hyp.10730
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816047462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4057471401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3670-5e70ea118ea1e218fb6f89887901063d4256a81ab8461c735dab47bc8c3167b3</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxa0KpG6BA9_AUi-9BMZJ_CfHalug2lUBCQnBxXKSCZgmcWp7F_bb17tb9dALF3vk-b038jxCThmcMYD8_HkzpUIW8IHMGFRVxkDxAzIDpXgmQMmP5FMILwBQgoIZGb6ht2s7PtEwutescWv0tMWpx2jdSJuVX2OgnUuPtuvQ4xhpmEy0pqehMf226d1APQ4uIg04hq2ZGdudIY3Y44DRb2hrojkmh53pA578vY_I3cX3u_lVtry-_DH_usyaQkjIOEpAw5hKB-ZMdbXoVKWUrICBKNoy58IoZmpVCtbIgremLmXdqKZgQtbFEfmyt528-73CEPVgQ4N9b0Z0q6CZYgJKWYr8fTTNrErGVZnQz_-hL27lx_SPRKkqbZtLSNT5nnq1PW705O1g_EYz0Nt8dMpH7_LRVw83uyIpsr3Chohv_xTG_9JCFpLr-5-XmvHHRX67mOuL4g9eEpQd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789109570</pqid></control><display><type>article</type><title>Deriving snow-cover depletion curves for different spatial scales from remote sensing and snow telemetry data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fassnacht, Steven R. ; Sexstone, Graham A. ; Kashipazha, Amir H. ; López-Moreno, Juan Ignacio ; Jasinski, Michael F. ; Kampf, Stephanie K. ; Von Thaden, Benjamin C.</creator><creatorcontrib>Fassnacht, Steven R. ; Sexstone, Graham A. ; Kashipazha, Amir H. ; López-Moreno, Juan Ignacio ; Jasinski, Michael F. ; Kampf, Stephanie K. ; Von Thaden, Benjamin C.</creatorcontrib><description>During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow‐covered area (SCA) once snow‐free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate‐resolution imaging spectroradiometer images to produce snow‐cover depletion curves. The snow depletion curves were created for an 80 000 km2 domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow‐cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A station's peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter‐annual consistency. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.10730</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Depletion ; Hydrology ; Mathematical models ; MODIS ; SCA ; Slopes ; SNOTEL ; Snow ; snow depletion curves ; snowmelt ; Stations ; SWE ; Telemetry ; Thresholds</subject><ispartof>Hydrological processes, 2016-05, Vol.30 (11), p.1708-1717</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3670-5e70ea118ea1e218fb6f89887901063d4256a81ab8461c735dab47bc8c3167b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.10730$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.10730$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Fassnacht, Steven R.</creatorcontrib><creatorcontrib>Sexstone, Graham A.</creatorcontrib><creatorcontrib>Kashipazha, Amir H.</creatorcontrib><creatorcontrib>López-Moreno, Juan Ignacio</creatorcontrib><creatorcontrib>Jasinski, Michael F.</creatorcontrib><creatorcontrib>Kampf, Stephanie K.</creatorcontrib><creatorcontrib>Von Thaden, Benjamin C.</creatorcontrib><title>Deriving snow-cover depletion curves for different spatial scales from remote sensing and snow telemetry data</title><title>Hydrological processes</title><addtitle>Hydrol. Process</addtitle><description>During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow‐covered area (SCA) once snow‐free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate‐resolution imaging spectroradiometer images to produce snow‐cover depletion curves. The snow depletion curves were created for an 80 000 km2 domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow‐cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A station's peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter‐annual consistency. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Depletion</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>MODIS</subject><subject>SCA</subject><subject>Slopes</subject><subject>SNOTEL</subject><subject>Snow</subject><subject>snow depletion curves</subject><subject>snowmelt</subject><subject>Stations</subject><subject>SWE</subject><subject>Telemetry</subject><subject>Thresholds</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU9P3DAQxa0KpG6BA9_AUi-9BMZJ_CfHalug2lUBCQnBxXKSCZgmcWp7F_bb17tb9dALF3vk-b038jxCThmcMYD8_HkzpUIW8IHMGFRVxkDxAzIDpXgmQMmP5FMILwBQgoIZGb6ht2s7PtEwutescWv0tMWpx2jdSJuVX2OgnUuPtuvQ4xhpmEy0pqehMf226d1APQ4uIg04hq2ZGdudIY3Y44DRb2hrojkmh53pA578vY_I3cX3u_lVtry-_DH_usyaQkjIOEpAw5hKB-ZMdbXoVKWUrICBKNoy58IoZmpVCtbIgremLmXdqKZgQtbFEfmyt528-73CEPVgQ4N9b0Z0q6CZYgJKWYr8fTTNrErGVZnQz_-hL27lx_SPRKkqbZtLSNT5nnq1PW705O1g_EYz0Nt8dMpH7_LRVw83uyIpsr3Chohv_xTG_9JCFpLr-5-XmvHHRX67mOuL4g9eEpQd</recordid><startdate>20160530</startdate><enddate>20160530</enddate><creator>Fassnacht, Steven R.</creator><creator>Sexstone, Graham A.</creator><creator>Kashipazha, Amir H.</creator><creator>López-Moreno, Juan Ignacio</creator><creator>Jasinski, Michael F.</creator><creator>Kampf, Stephanie K.</creator><creator>Von Thaden, Benjamin C.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20160530</creationdate><title>Deriving snow-cover depletion curves for different spatial scales from remote sensing and snow telemetry data</title><author>Fassnacht, Steven R. ; Sexstone, Graham A. ; Kashipazha, Amir H. ; López-Moreno, Juan Ignacio ; Jasinski, Michael F. ; Kampf, Stephanie K. ; Von Thaden, Benjamin C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3670-5e70ea118ea1e218fb6f89887901063d4256a81ab8461c735dab47bc8c3167b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Depletion</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>MODIS</topic><topic>SCA</topic><topic>Slopes</topic><topic>SNOTEL</topic><topic>Snow</topic><topic>snow depletion curves</topic><topic>snowmelt</topic><topic>Stations</topic><topic>SWE</topic><topic>Telemetry</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fassnacht, Steven R.</creatorcontrib><creatorcontrib>Sexstone, Graham A.</creatorcontrib><creatorcontrib>Kashipazha, Amir H.</creatorcontrib><creatorcontrib>López-Moreno, Juan Ignacio</creatorcontrib><creatorcontrib>Jasinski, Michael F.</creatorcontrib><creatorcontrib>Kampf, Stephanie K.</creatorcontrib><creatorcontrib>Von Thaden, Benjamin C.</creatorcontrib><collection>Istex</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fassnacht, Steven R.</au><au>Sexstone, Graham A.</au><au>Kashipazha, Amir H.</au><au>López-Moreno, Juan Ignacio</au><au>Jasinski, Michael F.</au><au>Kampf, Stephanie K.</au><au>Von Thaden, Benjamin C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deriving snow-cover depletion curves for different spatial scales from remote sensing and snow telemetry data</atitle><jtitle>Hydrological processes</jtitle><addtitle>Hydrol. Process</addtitle><date>2016-05-30</date><risdate>2016</risdate><volume>30</volume><issue>11</issue><spage>1708</spage><epage>1717</epage><pages>1708-1717</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><abstract>During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow‐covered area (SCA) once snow‐free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate‐resolution imaging spectroradiometer images to produce snow‐cover depletion curves. The snow depletion curves were created for an 80 000 km2 domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow‐cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A station's peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter‐annual consistency. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/hyp.10730</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 2016-05, Vol.30 (11), p.1708-1717
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_miscellaneous_1816047462
source Wiley Online Library Journals Frontfile Complete
subjects Depletion
Hydrology
Mathematical models
MODIS
SCA
Slopes
SNOTEL
Snow
snow depletion curves
snowmelt
Stations
SWE
Telemetry
Thresholds
title Deriving snow-cover depletion curves for different spatial scales from remote sensing and snow telemetry data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deriving%20snow-cover%20depletion%20curves%20for%20different%20spatial%20scales%20from%20remote%20sensing%20and%20snow%20telemetry%20data&rft.jtitle=Hydrological%20processes&rft.au=Fassnacht,%20Steven%20R.&rft.date=2016-05-30&rft.volume=30&rft.issue=11&rft.spage=1708&rft.epage=1717&rft.pages=1708-1717&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.10730&rft_dat=%3Cproquest_wiley%3E4057471401%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789109570&rft_id=info:pmid/&rfr_iscdi=true