A comprehensive review on uncertainty modeling techniques in power system studies

As a direct consequence of power systems restructuring on one hand and unprecedented renewable energy utilization on the other, the uncertainties of power systems are getting more and more attention. This fact intensifies the difficulty of decision making in the power system context; therefore, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable & sustainable energy reviews 2016-05, Vol.57, p.1077-1089
Hauptverfasser: Aien, Morteza, Hajebrahimi, Ali, Fotuhi-Firuzabad, Mahmud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1089
container_issue
container_start_page 1077
container_title Renewable & sustainable energy reviews
container_volume 57
creator Aien, Morteza
Hajebrahimi, Ali
Fotuhi-Firuzabad, Mahmud
description As a direct consequence of power systems restructuring on one hand and unprecedented renewable energy utilization on the other, the uncertainties of power systems are getting more and more attention. This fact intensifies the difficulty of decision making in the power system context; therefore, the uncertainty analysis of the system performance seems necessary. Generally, uncertainties in any engineering system study can be represented probabilistically or possibilistically. When sufficient historical data of the system variables is not available, a probability density function (PDF) might not be defined, they must be represented in another manner i.e. using possibilistic theory. When some of the system uncertain variables are probabilistic and some are possibilistic, neither the conventional pure probabilistic nor pure possibilistic methods can be implemented. Hence, a combined solution is needed. This paper gives a complete review on uncertainty modeling approaches for power system studies making sense about the strengths and weakness of these methods. This work may be used in order to select the most appropriate method for each application.
doi_str_mv 10.1016/j.rser.2015.12.070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816045436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364032115014537</els_id><sourcerecordid>1790951690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-77b40681c1978301455f740ae4353ccb7529ce532453eddcb0637318d1fe524b3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhoMoWKt_wNMevSTu7Ec2AS-l-AUFEfS8JJuJ3ZIvd5OW_ns31LOeZg7P-zLzRNEt0AQopPe7xHl0CaMgE2AJVfQsWkCm8pimOT0PO09FTDmDy-jK-x0NYKb4InpfEdO3g8Mtdt7ukTjcWzyQviNTZ9CNhe3GI2n7ChvbfZERzbaz3xN6Yjsy9Ad0xB_9iC3x41RZ9NfRRV00Hm9-5zL6fHr8WL_Em7fn1_VqExvBxBgrVQqaZmAgVxmnIKSslaAFCi65MaWSLDcoOROSY1WZkqZcccgqqFEyUfJldHfqHVw_3zPq1nqDTVN02E9eQwYpFVLw9H9U5TSXEEwFlJ1Q43rvHdZ6cLYt3FED1bNqvdOzaj2r1sB0UB1CD6cQhn-DPqe9sRj0VdahGXXV27_iPw5sh3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790951690</pqid></control><display><type>article</type><title>A comprehensive review on uncertainty modeling techniques in power system studies</title><source>Access via ScienceDirect (Elsevier)</source><creator>Aien, Morteza ; Hajebrahimi, Ali ; Fotuhi-Firuzabad, Mahmud</creator><creatorcontrib>Aien, Morteza ; Hajebrahimi, Ali ; Fotuhi-Firuzabad, Mahmud</creatorcontrib><description>As a direct consequence of power systems restructuring on one hand and unprecedented renewable energy utilization on the other, the uncertainties of power systems are getting more and more attention. This fact intensifies the difficulty of decision making in the power system context; therefore, the uncertainty analysis of the system performance seems necessary. Generally, uncertainties in any engineering system study can be represented probabilistically or possibilistically. When sufficient historical data of the system variables is not available, a probability density function (PDF) might not be defined, they must be represented in another manner i.e. using possibilistic theory. When some of the system uncertain variables are probabilistic and some are possibilistic, neither the conventional pure probabilistic nor pure possibilistic methods can be implemented. Hence, a combined solution is needed. This paper gives a complete review on uncertainty modeling approaches for power system studies making sense about the strengths and weakness of these methods. This work may be used in order to select the most appropriate method for each application.</description><identifier>ISSN: 1364-0321</identifier><identifier>EISSN: 1879-0690</identifier><identifier>DOI: 10.1016/j.rser.2015.12.070</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Decision making ; Historic ; Joint possibilistic–probabilistic uncertainty modeling ; Mathematical models ; Modelling ; Possibilistic uncertainty modeling ; Probabilistic methods ; Probabilistic uncertainty modeling ; Probability density functions ; Probability theory ; Renewable energy ; Uncertain power system studies ; Uncertainty</subject><ispartof>Renewable &amp; sustainable energy reviews, 2016-05, Vol.57, p.1077-1089</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-77b40681c1978301455f740ae4353ccb7529ce532453eddcb0637318d1fe524b3</citedby><cites>FETCH-LOGICAL-c424t-77b40681c1978301455f740ae4353ccb7529ce532453eddcb0637318d1fe524b3</cites><orcidid>0000-0002-9689-703X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rser.2015.12.070$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Aien, Morteza</creatorcontrib><creatorcontrib>Hajebrahimi, Ali</creatorcontrib><creatorcontrib>Fotuhi-Firuzabad, Mahmud</creatorcontrib><title>A comprehensive review on uncertainty modeling techniques in power system studies</title><title>Renewable &amp; sustainable energy reviews</title><description>As a direct consequence of power systems restructuring on one hand and unprecedented renewable energy utilization on the other, the uncertainties of power systems are getting more and more attention. This fact intensifies the difficulty of decision making in the power system context; therefore, the uncertainty analysis of the system performance seems necessary. Generally, uncertainties in any engineering system study can be represented probabilistically or possibilistically. When sufficient historical data of the system variables is not available, a probability density function (PDF) might not be defined, they must be represented in another manner i.e. using possibilistic theory. When some of the system uncertain variables are probabilistic and some are possibilistic, neither the conventional pure probabilistic nor pure possibilistic methods can be implemented. Hence, a combined solution is needed. This paper gives a complete review on uncertainty modeling approaches for power system studies making sense about the strengths and weakness of these methods. This work may be used in order to select the most appropriate method for each application.</description><subject>Decision making</subject><subject>Historic</subject><subject>Joint possibilistic–probabilistic uncertainty modeling</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Possibilistic uncertainty modeling</subject><subject>Probabilistic methods</subject><subject>Probabilistic uncertainty modeling</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Renewable energy</subject><subject>Uncertain power system studies</subject><subject>Uncertainty</subject><issn>1364-0321</issn><issn>1879-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhoMoWKt_wNMevSTu7Ec2AS-l-AUFEfS8JJuJ3ZIvd5OW_ns31LOeZg7P-zLzRNEt0AQopPe7xHl0CaMgE2AJVfQsWkCm8pimOT0PO09FTDmDy-jK-x0NYKb4InpfEdO3g8Mtdt7ukTjcWzyQviNTZ9CNhe3GI2n7ChvbfZERzbaz3xN6Yjsy9Ad0xB_9iC3x41RZ9NfRRV00Hm9-5zL6fHr8WL_Em7fn1_VqExvBxBgrVQqaZmAgVxmnIKSslaAFCi65MaWSLDcoOROSY1WZkqZcccgqqFEyUfJldHfqHVw_3zPq1nqDTVN02E9eQwYpFVLw9H9U5TSXEEwFlJ1Q43rvHdZ6cLYt3FED1bNqvdOzaj2r1sB0UB1CD6cQhn-DPqe9sRj0VdahGXXV27_iPw5sh3g</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Aien, Morteza</creator><creator>Hajebrahimi, Ali</creator><creator>Fotuhi-Firuzabad, Mahmud</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9689-703X</orcidid></search><sort><creationdate>20160501</creationdate><title>A comprehensive review on uncertainty modeling techniques in power system studies</title><author>Aien, Morteza ; Hajebrahimi, Ali ; Fotuhi-Firuzabad, Mahmud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-77b40681c1978301455f740ae4353ccb7529ce532453eddcb0637318d1fe524b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Decision making</topic><topic>Historic</topic><topic>Joint possibilistic–probabilistic uncertainty modeling</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Possibilistic uncertainty modeling</topic><topic>Probabilistic methods</topic><topic>Probabilistic uncertainty modeling</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Renewable energy</topic><topic>Uncertain power system studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aien, Morteza</creatorcontrib><creatorcontrib>Hajebrahimi, Ali</creatorcontrib><creatorcontrib>Fotuhi-Firuzabad, Mahmud</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Renewable &amp; sustainable energy reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aien, Morteza</au><au>Hajebrahimi, Ali</au><au>Fotuhi-Firuzabad, Mahmud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive review on uncertainty modeling techniques in power system studies</atitle><jtitle>Renewable &amp; sustainable energy reviews</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>57</volume><spage>1077</spage><epage>1089</epage><pages>1077-1089</pages><issn>1364-0321</issn><eissn>1879-0690</eissn><abstract>As a direct consequence of power systems restructuring on one hand and unprecedented renewable energy utilization on the other, the uncertainties of power systems are getting more and more attention. This fact intensifies the difficulty of decision making in the power system context; therefore, the uncertainty analysis of the system performance seems necessary. Generally, uncertainties in any engineering system study can be represented probabilistically or possibilistically. When sufficient historical data of the system variables is not available, a probability density function (PDF) might not be defined, they must be represented in another manner i.e. using possibilistic theory. When some of the system uncertain variables are probabilistic and some are possibilistic, neither the conventional pure probabilistic nor pure possibilistic methods can be implemented. Hence, a combined solution is needed. This paper gives a complete review on uncertainty modeling approaches for power system studies making sense about the strengths and weakness of these methods. This work may be used in order to select the most appropriate method for each application.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.rser.2015.12.070</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9689-703X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1364-0321
ispartof Renewable & sustainable energy reviews, 2016-05, Vol.57, p.1077-1089
issn 1364-0321
1879-0690
language eng
recordid cdi_proquest_miscellaneous_1816045436
source Access via ScienceDirect (Elsevier)
subjects Decision making
Historic
Joint possibilistic–probabilistic uncertainty modeling
Mathematical models
Modelling
Possibilistic uncertainty modeling
Probabilistic methods
Probabilistic uncertainty modeling
Probability density functions
Probability theory
Renewable energy
Uncertain power system studies
Uncertainty
title A comprehensive review on uncertainty modeling techniques in power system studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20review%20on%20uncertainty%20modeling%20techniques%20in%20power%20system%20studies&rft.jtitle=Renewable%20&%20sustainable%20energy%20reviews&rft.au=Aien,%20Morteza&rft.date=2016-05-01&rft.volume=57&rft.spage=1077&rft.epage=1089&rft.pages=1077-1089&rft.issn=1364-0321&rft.eissn=1879-0690&rft_id=info:doi/10.1016/j.rser.2015.12.070&rft_dat=%3Cproquest_cross%3E1790951690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790951690&rft_id=info:pmid/&rft_els_id=S1364032115014537&rfr_iscdi=true