A comprehensive review on uncertainty modeling techniques in power system studies
As a direct consequence of power systems restructuring on one hand and unprecedented renewable energy utilization on the other, the uncertainties of power systems are getting more and more attention. This fact intensifies the difficulty of decision making in the power system context; therefore, the...
Gespeichert in:
Veröffentlicht in: | Renewable & sustainable energy reviews 2016-05, Vol.57, p.1077-1089 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1089 |
---|---|
container_issue | |
container_start_page | 1077 |
container_title | Renewable & sustainable energy reviews |
container_volume | 57 |
creator | Aien, Morteza Hajebrahimi, Ali Fotuhi-Firuzabad, Mahmud |
description | As a direct consequence of power systems restructuring on one hand and unprecedented renewable energy utilization on the other, the uncertainties of power systems are getting more and more attention. This fact intensifies the difficulty of decision making in the power system context; therefore, the uncertainty analysis of the system performance seems necessary. Generally, uncertainties in any engineering system study can be represented probabilistically or possibilistically. When sufficient historical data of the system variables is not available, a probability density function (PDF) might not be defined, they must be represented in another manner i.e. using possibilistic theory. When some of the system uncertain variables are probabilistic and some are possibilistic, neither the conventional pure probabilistic nor pure possibilistic methods can be implemented. Hence, a combined solution is needed. This paper gives a complete review on uncertainty modeling approaches for power system studies making sense about the strengths and weakness of these methods. This work may be used in order to select the most appropriate method for each application. |
doi_str_mv | 10.1016/j.rser.2015.12.070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816045436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364032115014537</els_id><sourcerecordid>1790951690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-77b40681c1978301455f740ae4353ccb7529ce532453eddcb0637318d1fe524b3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhoMoWKt_wNMevSTu7Ec2AS-l-AUFEfS8JJuJ3ZIvd5OW_ns31LOeZg7P-zLzRNEt0AQopPe7xHl0CaMgE2AJVfQsWkCm8pimOT0PO09FTDmDy-jK-x0NYKb4InpfEdO3g8Mtdt7ukTjcWzyQviNTZ9CNhe3GI2n7ChvbfZERzbaz3xN6Yjsy9Ad0xB_9iC3x41RZ9NfRRV00Hm9-5zL6fHr8WL_Em7fn1_VqExvBxBgrVQqaZmAgVxmnIKSslaAFCi65MaWSLDcoOROSY1WZkqZcccgqqFEyUfJldHfqHVw_3zPq1nqDTVN02E9eQwYpFVLw9H9U5TSXEEwFlJ1Q43rvHdZ6cLYt3FED1bNqvdOzaj2r1sB0UB1CD6cQhn-DPqe9sRj0VdahGXXV27_iPw5sh3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790951690</pqid></control><display><type>article</type><title>A comprehensive review on uncertainty modeling techniques in power system studies</title><source>Access via ScienceDirect (Elsevier)</source><creator>Aien, Morteza ; Hajebrahimi, Ali ; Fotuhi-Firuzabad, Mahmud</creator><creatorcontrib>Aien, Morteza ; Hajebrahimi, Ali ; Fotuhi-Firuzabad, Mahmud</creatorcontrib><description>As a direct consequence of power systems restructuring on one hand and unprecedented renewable energy utilization on the other, the uncertainties of power systems are getting more and more attention. This fact intensifies the difficulty of decision making in the power system context; therefore, the uncertainty analysis of the system performance seems necessary. Generally, uncertainties in any engineering system study can be represented probabilistically or possibilistically. When sufficient historical data of the system variables is not available, a probability density function (PDF) might not be defined, they must be represented in another manner i.e. using possibilistic theory. When some of the system uncertain variables are probabilistic and some are possibilistic, neither the conventional pure probabilistic nor pure possibilistic methods can be implemented. Hence, a combined solution is needed. This paper gives a complete review on uncertainty modeling approaches for power system studies making sense about the strengths and weakness of these methods. This work may be used in order to select the most appropriate method for each application.</description><identifier>ISSN: 1364-0321</identifier><identifier>EISSN: 1879-0690</identifier><identifier>DOI: 10.1016/j.rser.2015.12.070</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Decision making ; Historic ; Joint possibilistic–probabilistic uncertainty modeling ; Mathematical models ; Modelling ; Possibilistic uncertainty modeling ; Probabilistic methods ; Probabilistic uncertainty modeling ; Probability density functions ; Probability theory ; Renewable energy ; Uncertain power system studies ; Uncertainty</subject><ispartof>Renewable & sustainable energy reviews, 2016-05, Vol.57, p.1077-1089</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-77b40681c1978301455f740ae4353ccb7529ce532453eddcb0637318d1fe524b3</citedby><cites>FETCH-LOGICAL-c424t-77b40681c1978301455f740ae4353ccb7529ce532453eddcb0637318d1fe524b3</cites><orcidid>0000-0002-9689-703X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rser.2015.12.070$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Aien, Morteza</creatorcontrib><creatorcontrib>Hajebrahimi, Ali</creatorcontrib><creatorcontrib>Fotuhi-Firuzabad, Mahmud</creatorcontrib><title>A comprehensive review on uncertainty modeling techniques in power system studies</title><title>Renewable & sustainable energy reviews</title><description>As a direct consequence of power systems restructuring on one hand and unprecedented renewable energy utilization on the other, the uncertainties of power systems are getting more and more attention. This fact intensifies the difficulty of decision making in the power system context; therefore, the uncertainty analysis of the system performance seems necessary. Generally, uncertainties in any engineering system study can be represented probabilistically or possibilistically. When sufficient historical data of the system variables is not available, a probability density function (PDF) might not be defined, they must be represented in another manner i.e. using possibilistic theory. When some of the system uncertain variables are probabilistic and some are possibilistic, neither the conventional pure probabilistic nor pure possibilistic methods can be implemented. Hence, a combined solution is needed. This paper gives a complete review on uncertainty modeling approaches for power system studies making sense about the strengths and weakness of these methods. This work may be used in order to select the most appropriate method for each application.</description><subject>Decision making</subject><subject>Historic</subject><subject>Joint possibilistic–probabilistic uncertainty modeling</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Possibilistic uncertainty modeling</subject><subject>Probabilistic methods</subject><subject>Probabilistic uncertainty modeling</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Renewable energy</subject><subject>Uncertain power system studies</subject><subject>Uncertainty</subject><issn>1364-0321</issn><issn>1879-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhoMoWKt_wNMevSTu7Ec2AS-l-AUFEfS8JJuJ3ZIvd5OW_ns31LOeZg7P-zLzRNEt0AQopPe7xHl0CaMgE2AJVfQsWkCm8pimOT0PO09FTDmDy-jK-x0NYKb4InpfEdO3g8Mtdt7ukTjcWzyQviNTZ9CNhe3GI2n7ChvbfZERzbaz3xN6Yjsy9Ad0xB_9iC3x41RZ9NfRRV00Hm9-5zL6fHr8WL_Em7fn1_VqExvBxBgrVQqaZmAgVxmnIKSslaAFCi65MaWSLDcoOROSY1WZkqZcccgqqFEyUfJldHfqHVw_3zPq1nqDTVN02E9eQwYpFVLw9H9U5TSXEEwFlJ1Q43rvHdZ6cLYt3FED1bNqvdOzaj2r1sB0UB1CD6cQhn-DPqe9sRj0VdahGXXV27_iPw5sh3g</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Aien, Morteza</creator><creator>Hajebrahimi, Ali</creator><creator>Fotuhi-Firuzabad, Mahmud</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9689-703X</orcidid></search><sort><creationdate>20160501</creationdate><title>A comprehensive review on uncertainty modeling techniques in power system studies</title><author>Aien, Morteza ; Hajebrahimi, Ali ; Fotuhi-Firuzabad, Mahmud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-77b40681c1978301455f740ae4353ccb7529ce532453eddcb0637318d1fe524b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Decision making</topic><topic>Historic</topic><topic>Joint possibilistic–probabilistic uncertainty modeling</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Possibilistic uncertainty modeling</topic><topic>Probabilistic methods</topic><topic>Probabilistic uncertainty modeling</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Renewable energy</topic><topic>Uncertain power system studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aien, Morteza</creatorcontrib><creatorcontrib>Hajebrahimi, Ali</creatorcontrib><creatorcontrib>Fotuhi-Firuzabad, Mahmud</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Renewable & sustainable energy reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aien, Morteza</au><au>Hajebrahimi, Ali</au><au>Fotuhi-Firuzabad, Mahmud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive review on uncertainty modeling techniques in power system studies</atitle><jtitle>Renewable & sustainable energy reviews</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>57</volume><spage>1077</spage><epage>1089</epage><pages>1077-1089</pages><issn>1364-0321</issn><eissn>1879-0690</eissn><abstract>As a direct consequence of power systems restructuring on one hand and unprecedented renewable energy utilization on the other, the uncertainties of power systems are getting more and more attention. This fact intensifies the difficulty of decision making in the power system context; therefore, the uncertainty analysis of the system performance seems necessary. Generally, uncertainties in any engineering system study can be represented probabilistically or possibilistically. When sufficient historical data of the system variables is not available, a probability density function (PDF) might not be defined, they must be represented in another manner i.e. using possibilistic theory. When some of the system uncertain variables are probabilistic and some are possibilistic, neither the conventional pure probabilistic nor pure possibilistic methods can be implemented. Hence, a combined solution is needed. This paper gives a complete review on uncertainty modeling approaches for power system studies making sense about the strengths and weakness of these methods. This work may be used in order to select the most appropriate method for each application.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.rser.2015.12.070</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9689-703X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-0321 |
ispartof | Renewable & sustainable energy reviews, 2016-05, Vol.57, p.1077-1089 |
issn | 1364-0321 1879-0690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816045436 |
source | Access via ScienceDirect (Elsevier) |
subjects | Decision making Historic Joint possibilistic–probabilistic uncertainty modeling Mathematical models Modelling Possibilistic uncertainty modeling Probabilistic methods Probabilistic uncertainty modeling Probability density functions Probability theory Renewable energy Uncertain power system studies Uncertainty |
title | A comprehensive review on uncertainty modeling techniques in power system studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20review%20on%20uncertainty%20modeling%20techniques%20in%20power%20system%20studies&rft.jtitle=Renewable%20&%20sustainable%20energy%20reviews&rft.au=Aien,%20Morteza&rft.date=2016-05-01&rft.volume=57&rft.spage=1077&rft.epage=1089&rft.pages=1077-1089&rft.issn=1364-0321&rft.eissn=1879-0690&rft_id=info:doi/10.1016/j.rser.2015.12.070&rft_dat=%3Cproquest_cross%3E1790951690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790951690&rft_id=info:pmid/&rft_els_id=S1364032115014537&rfr_iscdi=true |