Modeling the propagation of mobile malware on complex networks

•A complex-network-based model for mobile malware spread is newly developed.•The impact of network topology on malware spread is considered in the novel model.•We analyze the parameter sensitivity on the propagation threshold of the model.•Research results show networks with higher heterogeneity con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2016-08, Vol.37, p.249-264
Hauptverfasser: Liu, Wanping, Liu, Chao, Yang, Zheng, Liu, Xiaoyang, Zhang, Yihao, Wei, Zuxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue
container_start_page 249
container_title Communications in nonlinear science & numerical simulation
container_volume 37
creator Liu, Wanping
Liu, Chao
Yang, Zheng
Liu, Xiaoyang
Zhang, Yihao
Wei, Zuxue
description •A complex-network-based model for mobile malware spread is newly developed.•The impact of network topology on malware spread is considered in the novel model.•We analyze the parameter sensitivity on the propagation threshold of the model.•Research results show networks with higher heterogeneity conduce to malware spread. In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.
doi_str_mv 10.1016/j.cnsns.2016.01.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816043667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570416300077</els_id><sourcerecordid>1816043667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4b889d123a7a51eefc7ed4e66b9aa4ca773c88f9373f5ee267f345ea833593383</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIXcPGRS4IdO7ZzAAlVvKQiLnC2HGdTXJI42CmFv8elnJFG2odmRruD0DklOSVUXK5zO8Qh5kUackITqgM0o0qqTBaSH6aeEJmVkvBjdBLjmiRiVfIZun7yDXRuWOHpDfAY_GhWZnJ-wL7Fva9dB7g33dYEwGlpfT928IUHmLY-vMdTdNSaLsLZX52j17vbl8VDtny-f1zcLDPLmJgyXitVNbRgRpqSArRWQsNBiLoyhlsjJbNKtRWTrC0BCiFbxkswirGyYkyxObrY-6YLPzYQJ927aKHrzAB-EzVVVBDOhJCJyvZUG3yMAVo9Bteb8K0p0bu09Fr_pqV3aWlCE6qkutqrIH3x6SDoaB0MFhoXwE668e5f_Q_rwXRf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816043667</pqid></control><display><type>article</type><title>Modeling the propagation of mobile malware on complex networks</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Wanping ; Liu, Chao ; Yang, Zheng ; Liu, Xiaoyang ; Zhang, Yihao ; Wei, Zuxue</creator><creatorcontrib>Liu, Wanping ; Liu, Chao ; Yang, Zheng ; Liu, Xiaoyang ; Zhang, Yihao ; Wei, Zuxue</creatorcontrib><description>•A complex-network-based model for mobile malware spread is newly developed.•The impact of network topology on malware spread is considered in the novel model.•We analyze the parameter sensitivity on the propagation threshold of the model.•Research results show networks with higher heterogeneity conduce to malware spread. In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2016.01.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Complex network ; Computer simulation ; Malware ; Malware propagation ; Mathematical models ; Mobile network ; Network topology ; Networks ; Spreading ; Stability ; Thresholds</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2016-08, Vol.37, p.249-264</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4b889d123a7a51eefc7ed4e66b9aa4ca773c88f9373f5ee267f345ea833593383</citedby><cites>FETCH-LOGICAL-c336t-4b889d123a7a51eefc7ed4e66b9aa4ca773c88f9373f5ee267f345ea833593383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2016.01.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Wanping</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Yang, Zheng</creatorcontrib><creatorcontrib>Liu, Xiaoyang</creatorcontrib><creatorcontrib>Zhang, Yihao</creatorcontrib><creatorcontrib>Wei, Zuxue</creatorcontrib><title>Modeling the propagation of mobile malware on complex networks</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•A complex-network-based model for mobile malware spread is newly developed.•The impact of network topology on malware spread is considered in the novel model.•We analyze the parameter sensitivity on the propagation threshold of the model.•Research results show networks with higher heterogeneity conduce to malware spread. In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.</description><subject>Asymptotic properties</subject><subject>Complex network</subject><subject>Computer simulation</subject><subject>Malware</subject><subject>Malware propagation</subject><subject>Mathematical models</subject><subject>Mobile network</subject><subject>Network topology</subject><subject>Networks</subject><subject>Spreading</subject><subject>Stability</subject><subject>Thresholds</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIXcPGRS4IdO7ZzAAlVvKQiLnC2HGdTXJI42CmFv8elnJFG2odmRruD0DklOSVUXK5zO8Qh5kUackITqgM0o0qqTBaSH6aeEJmVkvBjdBLjmiRiVfIZun7yDXRuWOHpDfAY_GhWZnJ-wL7Fva9dB7g33dYEwGlpfT928IUHmLY-vMdTdNSaLsLZX52j17vbl8VDtny-f1zcLDPLmJgyXitVNbRgRpqSArRWQsNBiLoyhlsjJbNKtRWTrC0BCiFbxkswirGyYkyxObrY-6YLPzYQJ927aKHrzAB-EzVVVBDOhJCJyvZUG3yMAVo9Bteb8K0p0bu09Fr_pqV3aWlCE6qkutqrIH3x6SDoaB0MFhoXwE668e5f_Q_rwXRf</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Liu, Wanping</creator><creator>Liu, Chao</creator><creator>Yang, Zheng</creator><creator>Liu, Xiaoyang</creator><creator>Zhang, Yihao</creator><creator>Wei, Zuxue</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201608</creationdate><title>Modeling the propagation of mobile malware on complex networks</title><author>Liu, Wanping ; Liu, Chao ; Yang, Zheng ; Liu, Xiaoyang ; Zhang, Yihao ; Wei, Zuxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4b889d123a7a51eefc7ed4e66b9aa4ca773c88f9373f5ee267f345ea833593383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Complex network</topic><topic>Computer simulation</topic><topic>Malware</topic><topic>Malware propagation</topic><topic>Mathematical models</topic><topic>Mobile network</topic><topic>Network topology</topic><topic>Networks</topic><topic>Spreading</topic><topic>Stability</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wanping</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Yang, Zheng</creatorcontrib><creatorcontrib>Liu, Xiaoyang</creatorcontrib><creatorcontrib>Zhang, Yihao</creatorcontrib><creatorcontrib>Wei, Zuxue</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wanping</au><au>Liu, Chao</au><au>Yang, Zheng</au><au>Liu, Xiaoyang</au><au>Zhang, Yihao</au><au>Wei, Zuxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the propagation of mobile malware on complex networks</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2016-08</date><risdate>2016</risdate><volume>37</volume><spage>249</spage><epage>264</epage><pages>249-264</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•A complex-network-based model for mobile malware spread is newly developed.•The impact of network topology on malware spread is considered in the novel model.•We analyze the parameter sensitivity on the propagation threshold of the model.•Research results show networks with higher heterogeneity conduce to malware spread. In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2016.01.019</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2016-08, Vol.37, p.249-264
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_miscellaneous_1816043667
source Access via ScienceDirect (Elsevier)
subjects Asymptotic properties
Complex network
Computer simulation
Malware
Malware propagation
Mathematical models
Mobile network
Network topology
Networks
Spreading
Stability
Thresholds
title Modeling the propagation of mobile malware on complex networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20propagation%20of%20mobile%20malware%20on%20complex%20networks&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Liu,%20Wanping&rft.date=2016-08&rft.volume=37&rft.spage=249&rft.epage=264&rft.pages=249-264&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2016.01.019&rft_dat=%3Cproquest_cross%3E1816043667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816043667&rft_id=info:pmid/&rft_els_id=S1007570416300077&rfr_iscdi=true