Optimal Fast Control and Scheduling of Power Distribution System Using Integrated Receding Horizon Control and Convex Conic Programming

In this paper, a convex optimal power flow (OPF) formulation integrated within receding horizon control (RHC) architecture using second-order conic programming (SOCP) is proposed. The main advantages of the proposed method are 1) global optimal scheduling with faster computation time; 2) dynamic mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2016-05, Vol.52 (3), p.2596-2606
Hauptverfasser: Moghadasi, Seyedmahdi, Kamalasadan, Sukumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2606
container_issue 3
container_start_page 2596
container_title IEEE transactions on industry applications
container_volume 52
creator Moghadasi, Seyedmahdi
Kamalasadan, Sukumar
description In this paper, a convex optimal power flow (OPF) formulation integrated within receding horizon control (RHC) architecture using second-order conic programming (SOCP) is proposed. The main advantages of the proposed method are 1) global optimal scheduling with faster computation time; 2) dynamic models with online control within optimization routine; and 3) integration of uncertain resources and measurements. The effectiveness of this method is evaluated using modified IEEE 32-bus and IEEE 119-bus distribution test systems considering network constraints such as energy market interactions, storage dynamics, and uncertain model of wind generation. The efficiency of the proposed method compared to RHC ac optimal power flow (RHC-ACOPF) is also evaluated using real-time simulator. The results show that the proposed method outperforms the RHC-ACOPF and guarantees global optimal solution. The proposed method also provides effective usage of energy storage system since dynamic modeling of energy storage within the optimization algorithm is possible using RHC integration.
doi_str_mv 10.1109/TIA.2016.2531623
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816043570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7410031</ieee_id><sourcerecordid>1816043570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-1f26178863ef2697c8b53d86e6a35c22d6ca5c0bec49f96ec047a9c41084fd723</originalsourceid><addsrcrecordid>eNpdkUFr3DAQhUVooNuk90Iugl568WZk2bJ1XLbdZCGQ0CRnoZXHWy22tZXktOkfyN-OzC4l5DSP4XvDYx4hXxjMGQN5-bBezHNgYp6XnImcn5AZk1xmkovqA5kBSJ5JKYuP5FMIOwBWlKyYkZfbfbS97uhKh0iXbojedVQPDb03v7AZOztsqWvpnfuDnn63IXq7GaN1A71_DhF7-hgmZD1E3HodsaE_0WAz7a6dt_8S-PZq0k_4dxrW0DvvkqfvE3xOTlvdBfx8nGfkcfXjYXmd3dxerZeLm8xwCTFjbS5YVdeCY1KyMvWm5E0tUGhemjxvhNGlgQ2aQrZSoIGi0tIUDOqibaqcn5Fvh7t7736PGKLqbTDYdXpANwbFaiag4GUFCf36Dt250Q8pnWKVBJFCCJ4oOFDGuxA8tmrv00P9s2KgpmZUakZNzahjM8lycbBYRPyPVykkcMZfAeGViso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790686363</pqid></control><display><type>article</type><title>Optimal Fast Control and Scheduling of Power Distribution System Using Integrated Receding Horizon Control and Convex Conic Programming</title><source>IEEE Electronic Library (IEL)</source><creator>Moghadasi, Seyedmahdi ; Kamalasadan, Sukumar</creator><creatorcontrib>Moghadasi, Seyedmahdi ; Kamalasadan, Sukumar</creatorcontrib><description>In this paper, a convex optimal power flow (OPF) formulation integrated within receding horizon control (RHC) architecture using second-order conic programming (SOCP) is proposed. The main advantages of the proposed method are 1) global optimal scheduling with faster computation time; 2) dynamic models with online control within optimization routine; and 3) integration of uncertain resources and measurements. The effectiveness of this method is evaluated using modified IEEE 32-bus and IEEE 119-bus distribution test systems considering network constraints such as energy market interactions, storage dynamics, and uncertain model of wind generation. The efficiency of the proposed method compared to RHC ac optimal power flow (RHC-ACOPF) is also evaluated using real-time simulator. The results show that the proposed method outperforms the RHC-ACOPF and guarantees global optimal solution. The proposed method also provides effective usage of energy storage system since dynamic modeling of energy storage within the optimization algorithm is possible using RHC integration.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2016.2531623</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Conics ; Control systems ; Convex Optimization ; Dynamical systems ; Dynamics ; Energy storage ; Job shop scheduling ; Mathematical models ; Optimal scheduling ; Optimization ; Programming ; Radial Distribution System ; Real-time Optimization ; Stochastic processes</subject><ispartof>IEEE transactions on industry applications, 2016-05, Vol.52 (3), p.2596-2606</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-1f26178863ef2697c8b53d86e6a35c22d6ca5c0bec49f96ec047a9c41084fd723</citedby><cites>FETCH-LOGICAL-c390t-1f26178863ef2697c8b53d86e6a35c22d6ca5c0bec49f96ec047a9c41084fd723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7410031$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7410031$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moghadasi, Seyedmahdi</creatorcontrib><creatorcontrib>Kamalasadan, Sukumar</creatorcontrib><title>Optimal Fast Control and Scheduling of Power Distribution System Using Integrated Receding Horizon Control and Convex Conic Programming</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>In this paper, a convex optimal power flow (OPF) formulation integrated within receding horizon control (RHC) architecture using second-order conic programming (SOCP) is proposed. The main advantages of the proposed method are 1) global optimal scheduling with faster computation time; 2) dynamic models with online control within optimization routine; and 3) integration of uncertain resources and measurements. The effectiveness of this method is evaluated using modified IEEE 32-bus and IEEE 119-bus distribution test systems considering network constraints such as energy market interactions, storage dynamics, and uncertain model of wind generation. The efficiency of the proposed method compared to RHC ac optimal power flow (RHC-ACOPF) is also evaluated using real-time simulator. The results show that the proposed method outperforms the RHC-ACOPF and guarantees global optimal solution. The proposed method also provides effective usage of energy storage system since dynamic modeling of energy storage within the optimization algorithm is possible using RHC integration.</description><subject>Computational modeling</subject><subject>Conics</subject><subject>Control systems</subject><subject>Convex Optimization</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Energy storage</subject><subject>Job shop scheduling</subject><subject>Mathematical models</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>Programming</subject><subject>Radial Distribution System</subject><subject>Real-time Optimization</subject><subject>Stochastic processes</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUFr3DAQhUVooNuk90Iugl568WZk2bJ1XLbdZCGQ0CRnoZXHWy22tZXktOkfyN-OzC4l5DSP4XvDYx4hXxjMGQN5-bBezHNgYp6XnImcn5AZk1xmkovqA5kBSJ5JKYuP5FMIOwBWlKyYkZfbfbS97uhKh0iXbojedVQPDb03v7AZOztsqWvpnfuDnn63IXq7GaN1A71_DhF7-hgmZD1E3HodsaE_0WAz7a6dt_8S-PZq0k_4dxrW0DvvkqfvE3xOTlvdBfx8nGfkcfXjYXmd3dxerZeLm8xwCTFjbS5YVdeCY1KyMvWm5E0tUGhemjxvhNGlgQ2aQrZSoIGi0tIUDOqibaqcn5Fvh7t7736PGKLqbTDYdXpANwbFaiag4GUFCf36Dt250Q8pnWKVBJFCCJ4oOFDGuxA8tmrv00P9s2KgpmZUakZNzahjM8lycbBYRPyPVykkcMZfAeGViso</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Moghadasi, Seyedmahdi</creator><creator>Kamalasadan, Sukumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201605</creationdate><title>Optimal Fast Control and Scheduling of Power Distribution System Using Integrated Receding Horizon Control and Convex Conic Programming</title><author>Moghadasi, Seyedmahdi ; Kamalasadan, Sukumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-1f26178863ef2697c8b53d86e6a35c22d6ca5c0bec49f96ec047a9c41084fd723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational modeling</topic><topic>Conics</topic><topic>Control systems</topic><topic>Convex Optimization</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Energy storage</topic><topic>Job shop scheduling</topic><topic>Mathematical models</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>Programming</topic><topic>Radial Distribution System</topic><topic>Real-time Optimization</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moghadasi, Seyedmahdi</creatorcontrib><creatorcontrib>Kamalasadan, Sukumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moghadasi, Seyedmahdi</au><au>Kamalasadan, Sukumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Fast Control and Scheduling of Power Distribution System Using Integrated Receding Horizon Control and Convex Conic Programming</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2016-05</date><risdate>2016</risdate><volume>52</volume><issue>3</issue><spage>2596</spage><epage>2606</epage><pages>2596-2606</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>In this paper, a convex optimal power flow (OPF) formulation integrated within receding horizon control (RHC) architecture using second-order conic programming (SOCP) is proposed. The main advantages of the proposed method are 1) global optimal scheduling with faster computation time; 2) dynamic models with online control within optimization routine; and 3) integration of uncertain resources and measurements. The effectiveness of this method is evaluated using modified IEEE 32-bus and IEEE 119-bus distribution test systems considering network constraints such as energy market interactions, storage dynamics, and uncertain model of wind generation. The efficiency of the proposed method compared to RHC ac optimal power flow (RHC-ACOPF) is also evaluated using real-time simulator. The results show that the proposed method outperforms the RHC-ACOPF and guarantees global optimal solution. The proposed method also provides effective usage of energy storage system since dynamic modeling of energy storage within the optimization algorithm is possible using RHC integration.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2016.2531623</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2016-05, Vol.52 (3), p.2596-2606
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_miscellaneous_1816043570
source IEEE Electronic Library (IEL)
subjects Computational modeling
Conics
Control systems
Convex Optimization
Dynamical systems
Dynamics
Energy storage
Job shop scheduling
Mathematical models
Optimal scheduling
Optimization
Programming
Radial Distribution System
Real-time Optimization
Stochastic processes
title Optimal Fast Control and Scheduling of Power Distribution System Using Integrated Receding Horizon Control and Convex Conic Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Fast%20Control%20and%20Scheduling%20of%20Power%20Distribution%20System%20Using%20Integrated%20Receding%20Horizon%20Control%20and%20Convex%20Conic%20Programming&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Moghadasi,%20Seyedmahdi&rft.date=2016-05&rft.volume=52&rft.issue=3&rft.spage=2596&rft.epage=2606&rft.pages=2596-2606&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2016.2531623&rft_dat=%3Cproquest_RIE%3E1816043570%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790686363&rft_id=info:pmid/&rft_ieee_id=7410031&rfr_iscdi=true