Optimal Fast Control and Scheduling of Power Distribution System Using Integrated Receding Horizon Control and Convex Conic Programming
In this paper, a convex optimal power flow (OPF) formulation integrated within receding horizon control (RHC) architecture using second-order conic programming (SOCP) is proposed. The main advantages of the proposed method are 1) global optimal scheduling with faster computation time; 2) dynamic mod...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2016-05, Vol.52 (3), p.2596-2606 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2606 |
---|---|
container_issue | 3 |
container_start_page | 2596 |
container_title | IEEE transactions on industry applications |
container_volume | 52 |
creator | Moghadasi, Seyedmahdi Kamalasadan, Sukumar |
description | In this paper, a convex optimal power flow (OPF) formulation integrated within receding horizon control (RHC) architecture using second-order conic programming (SOCP) is proposed. The main advantages of the proposed method are 1) global optimal scheduling with faster computation time; 2) dynamic models with online control within optimization routine; and 3) integration of uncertain resources and measurements. The effectiveness of this method is evaluated using modified IEEE 32-bus and IEEE 119-bus distribution test systems considering network constraints such as energy market interactions, storage dynamics, and uncertain model of wind generation. The efficiency of the proposed method compared to RHC ac optimal power flow (RHC-ACOPF) is also evaluated using real-time simulator. The results show that the proposed method outperforms the RHC-ACOPF and guarantees global optimal solution. The proposed method also provides effective usage of energy storage system since dynamic modeling of energy storage within the optimization algorithm is possible using RHC integration. |
doi_str_mv | 10.1109/TIA.2016.2531623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816043570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7410031</ieee_id><sourcerecordid>1816043570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-1f26178863ef2697c8b53d86e6a35c22d6ca5c0bec49f96ec047a9c41084fd723</originalsourceid><addsrcrecordid>eNpdkUFr3DAQhUVooNuk90Iugl568WZk2bJ1XLbdZCGQ0CRnoZXHWy22tZXktOkfyN-OzC4l5DSP4XvDYx4hXxjMGQN5-bBezHNgYp6XnImcn5AZk1xmkovqA5kBSJ5JKYuP5FMIOwBWlKyYkZfbfbS97uhKh0iXbojedVQPDb03v7AZOztsqWvpnfuDnn63IXq7GaN1A71_DhF7-hgmZD1E3HodsaE_0WAz7a6dt_8S-PZq0k_4dxrW0DvvkqfvE3xOTlvdBfx8nGfkcfXjYXmd3dxerZeLm8xwCTFjbS5YVdeCY1KyMvWm5E0tUGhemjxvhNGlgQ2aQrZSoIGi0tIUDOqibaqcn5Fvh7t7736PGKLqbTDYdXpANwbFaiag4GUFCf36Dt250Q8pnWKVBJFCCJ4oOFDGuxA8tmrv00P9s2KgpmZUakZNzahjM8lycbBYRPyPVykkcMZfAeGViso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790686363</pqid></control><display><type>article</type><title>Optimal Fast Control and Scheduling of Power Distribution System Using Integrated Receding Horizon Control and Convex Conic Programming</title><source>IEEE Electronic Library (IEL)</source><creator>Moghadasi, Seyedmahdi ; Kamalasadan, Sukumar</creator><creatorcontrib>Moghadasi, Seyedmahdi ; Kamalasadan, Sukumar</creatorcontrib><description>In this paper, a convex optimal power flow (OPF) formulation integrated within receding horizon control (RHC) architecture using second-order conic programming (SOCP) is proposed. The main advantages of the proposed method are 1) global optimal scheduling with faster computation time; 2) dynamic models with online control within optimization routine; and 3) integration of uncertain resources and measurements. The effectiveness of this method is evaluated using modified IEEE 32-bus and IEEE 119-bus distribution test systems considering network constraints such as energy market interactions, storage dynamics, and uncertain model of wind generation. The efficiency of the proposed method compared to RHC ac optimal power flow (RHC-ACOPF) is also evaluated using real-time simulator. The results show that the proposed method outperforms the RHC-ACOPF and guarantees global optimal solution. The proposed method also provides effective usage of energy storage system since dynamic modeling of energy storage within the optimization algorithm is possible using RHC integration.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2016.2531623</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Conics ; Control systems ; Convex Optimization ; Dynamical systems ; Dynamics ; Energy storage ; Job shop scheduling ; Mathematical models ; Optimal scheduling ; Optimization ; Programming ; Radial Distribution System ; Real-time Optimization ; Stochastic processes</subject><ispartof>IEEE transactions on industry applications, 2016-05, Vol.52 (3), p.2596-2606</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-1f26178863ef2697c8b53d86e6a35c22d6ca5c0bec49f96ec047a9c41084fd723</citedby><cites>FETCH-LOGICAL-c390t-1f26178863ef2697c8b53d86e6a35c22d6ca5c0bec49f96ec047a9c41084fd723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7410031$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7410031$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moghadasi, Seyedmahdi</creatorcontrib><creatorcontrib>Kamalasadan, Sukumar</creatorcontrib><title>Optimal Fast Control and Scheduling of Power Distribution System Using Integrated Receding Horizon Control and Convex Conic Programming</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>In this paper, a convex optimal power flow (OPF) formulation integrated within receding horizon control (RHC) architecture using second-order conic programming (SOCP) is proposed. The main advantages of the proposed method are 1) global optimal scheduling with faster computation time; 2) dynamic models with online control within optimization routine; and 3) integration of uncertain resources and measurements. The effectiveness of this method is evaluated using modified IEEE 32-bus and IEEE 119-bus distribution test systems considering network constraints such as energy market interactions, storage dynamics, and uncertain model of wind generation. The efficiency of the proposed method compared to RHC ac optimal power flow (RHC-ACOPF) is also evaluated using real-time simulator. The results show that the proposed method outperforms the RHC-ACOPF and guarantees global optimal solution. The proposed method also provides effective usage of energy storage system since dynamic modeling of energy storage within the optimization algorithm is possible using RHC integration.</description><subject>Computational modeling</subject><subject>Conics</subject><subject>Control systems</subject><subject>Convex Optimization</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Energy storage</subject><subject>Job shop scheduling</subject><subject>Mathematical models</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>Programming</subject><subject>Radial Distribution System</subject><subject>Real-time Optimization</subject><subject>Stochastic processes</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUFr3DAQhUVooNuk90Iugl568WZk2bJ1XLbdZCGQ0CRnoZXHWy22tZXktOkfyN-OzC4l5DSP4XvDYx4hXxjMGQN5-bBezHNgYp6XnImcn5AZk1xmkovqA5kBSJ5JKYuP5FMIOwBWlKyYkZfbfbS97uhKh0iXbojedVQPDb03v7AZOztsqWvpnfuDnn63IXq7GaN1A71_DhF7-hgmZD1E3HodsaE_0WAz7a6dt_8S-PZq0k_4dxrW0DvvkqfvE3xOTlvdBfx8nGfkcfXjYXmd3dxerZeLm8xwCTFjbS5YVdeCY1KyMvWm5E0tUGhemjxvhNGlgQ2aQrZSoIGi0tIUDOqibaqcn5Fvh7t7736PGKLqbTDYdXpANwbFaiag4GUFCf36Dt250Q8pnWKVBJFCCJ4oOFDGuxA8tmrv00P9s2KgpmZUakZNzahjM8lycbBYRPyPVykkcMZfAeGViso</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Moghadasi, Seyedmahdi</creator><creator>Kamalasadan, Sukumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201605</creationdate><title>Optimal Fast Control and Scheduling of Power Distribution System Using Integrated Receding Horizon Control and Convex Conic Programming</title><author>Moghadasi, Seyedmahdi ; Kamalasadan, Sukumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-1f26178863ef2697c8b53d86e6a35c22d6ca5c0bec49f96ec047a9c41084fd723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational modeling</topic><topic>Conics</topic><topic>Control systems</topic><topic>Convex Optimization</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Energy storage</topic><topic>Job shop scheduling</topic><topic>Mathematical models</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>Programming</topic><topic>Radial Distribution System</topic><topic>Real-time Optimization</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moghadasi, Seyedmahdi</creatorcontrib><creatorcontrib>Kamalasadan, Sukumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moghadasi, Seyedmahdi</au><au>Kamalasadan, Sukumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Fast Control and Scheduling of Power Distribution System Using Integrated Receding Horizon Control and Convex Conic Programming</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2016-05</date><risdate>2016</risdate><volume>52</volume><issue>3</issue><spage>2596</spage><epage>2606</epage><pages>2596-2606</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>In this paper, a convex optimal power flow (OPF) formulation integrated within receding horizon control (RHC) architecture using second-order conic programming (SOCP) is proposed. The main advantages of the proposed method are 1) global optimal scheduling with faster computation time; 2) dynamic models with online control within optimization routine; and 3) integration of uncertain resources and measurements. The effectiveness of this method is evaluated using modified IEEE 32-bus and IEEE 119-bus distribution test systems considering network constraints such as energy market interactions, storage dynamics, and uncertain model of wind generation. The efficiency of the proposed method compared to RHC ac optimal power flow (RHC-ACOPF) is also evaluated using real-time simulator. The results show that the proposed method outperforms the RHC-ACOPF and guarantees global optimal solution. The proposed method also provides effective usage of energy storage system since dynamic modeling of energy storage within the optimization algorithm is possible using RHC integration.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2016.2531623</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2016-05, Vol.52 (3), p.2596-2606 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816043570 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Conics Control systems Convex Optimization Dynamical systems Dynamics Energy storage Job shop scheduling Mathematical models Optimal scheduling Optimization Programming Radial Distribution System Real-time Optimization Stochastic processes |
title | Optimal Fast Control and Scheduling of Power Distribution System Using Integrated Receding Horizon Control and Convex Conic Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Fast%20Control%20and%20Scheduling%20of%20Power%20Distribution%20System%20Using%20Integrated%20Receding%20Horizon%20Control%20and%20Convex%20Conic%20Programming&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Moghadasi,%20Seyedmahdi&rft.date=2016-05&rft.volume=52&rft.issue=3&rft.spage=2596&rft.epage=2606&rft.pages=2596-2606&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2016.2531623&rft_dat=%3Cproquest_RIE%3E1816043570%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790686363&rft_id=info:pmid/&rft_ieee_id=7410031&rfr_iscdi=true |