Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?
We investigate whether or not the low ionization fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD)...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2016-03, Vol.457 (1), p.1037-1061 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1061 |
---|---|
container_issue | 1 |
container_start_page | 1037 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 457 |
creator | Wurster, James Price, Daniel J. Bate, Matthew R. |
description | We investigate whether or not the low ionization fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core. |
doi_str_mv | 10.1093/mnras/stw013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816043334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stw013</oup_id><sourcerecordid>4065623391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-7b2202241f6fc115116fdd3fbfe1932e1f96ffa7b9522048d45313dbe33b9dd63</originalsourceid><addsrcrecordid>eNqN0T1PwzAQBmALgUQpbPyASAwwEOqzEyeeEIr4VCUWmC0nttuUxA52Auq_J5BODIjphnt0ulcvQqeArwBzumitl2ER-k8MdA_NgLI0JpyxfTTDmKZxngEcoqMQNhjjhBI2Q0-FtJF1Nq6Vlk3UypXVvVtvlXdqa2VbVyEKrvnQUb_Wu3VdRaWXb7VdRZXsZei969b6-hgdGNkEfbKbc_R6d_tSPMTL5_vH4mYZV5TzPs5KQjAhCRhmKoAUgBmlqCmNBk6JBsOZMTIreTrCJFdJSoGqUlNacqUYnaOL6W7n3fugQy_aOlS6aaTVbggCcmBjOkqTf1Ccs_GDnIz07BfduMHbMYiAjOMsAeD5qC4nVXkXgtdGdL5upd8KwOK7A_HTgZg6GPn5xN3Q_S2_APFRiK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790741198</pqid></control><display><type>article</type><title>Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Wurster, James ; Price, Daniel J. ; Bate, Matthew R.</creator><creatorcontrib>Wurster, James ; Price, Daniel J. ; Bate, Matthew R.</creatorcontrib><description>We investigate whether or not the low ionization fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stw013</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astronomy ; Brake disks ; Braking ; Fluid mechanics ; Hall effect ; Magnetic fields ; Magnetism ; Magnetohydrodynamics ; Mathematical analysis ; Molecular clouds ; Simulation ; Vectors (mathematics)</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2016-03, Vol.457 (1), p.1037-1061</ispartof><rights>2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016</rights><rights>Copyright Oxford University Press, UK Mar 21, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-7b2202241f6fc115116fdd3fbfe1932e1f96ffa7b9522048d45313dbe33b9dd63</citedby><cites>FETCH-LOGICAL-c399t-7b2202241f6fc115116fdd3fbfe1932e1f96ffa7b9522048d45313dbe33b9dd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stw013$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Wurster, James</creatorcontrib><creatorcontrib>Price, Daniel J.</creatorcontrib><creatorcontrib>Bate, Matthew R.</creatorcontrib><title>Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?</title><title>Monthly notices of the Royal Astronomical Society</title><description>We investigate whether or not the low ionization fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core.</description><subject>Astronomy</subject><subject>Brake disks</subject><subject>Braking</subject><subject>Fluid mechanics</subject><subject>Hall effect</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Molecular clouds</subject><subject>Simulation</subject><subject>Vectors (mathematics)</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0T1PwzAQBmALgUQpbPyASAwwEOqzEyeeEIr4VCUWmC0nttuUxA52Auq_J5BODIjphnt0ulcvQqeArwBzumitl2ER-k8MdA_NgLI0JpyxfTTDmKZxngEcoqMQNhjjhBI2Q0-FtJF1Nq6Vlk3UypXVvVtvlXdqa2VbVyEKrvnQUb_Wu3VdRaWXb7VdRZXsZei969b6-hgdGNkEfbKbc_R6d_tSPMTL5_vH4mYZV5TzPs5KQjAhCRhmKoAUgBmlqCmNBk6JBsOZMTIreTrCJFdJSoGqUlNacqUYnaOL6W7n3fugQy_aOlS6aaTVbggCcmBjOkqTf1Ccs_GDnIz07BfduMHbMYiAjOMsAeD5qC4nVXkXgtdGdL5upd8KwOK7A_HTgZg6GPn5xN3Q_S2_APFRiK8</recordid><startdate>20160321</startdate><enddate>20160321</enddate><creator>Wurster, James</creator><creator>Price, Daniel J.</creator><creator>Bate, Matthew R.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20160321</creationdate><title>Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?</title><author>Wurster, James ; Price, Daniel J. ; Bate, Matthew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-7b2202241f6fc115116fdd3fbfe1932e1f96ffa7b9522048d45313dbe33b9dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Astronomy</topic><topic>Brake disks</topic><topic>Braking</topic><topic>Fluid mechanics</topic><topic>Hall effect</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Molecular clouds</topic><topic>Simulation</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wurster, James</creatorcontrib><creatorcontrib>Price, Daniel J.</creatorcontrib><creatorcontrib>Bate, Matthew R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wurster, James</au><au>Price, Daniel J.</au><au>Bate, Matthew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2016-03-21</date><risdate>2016</risdate><volume>457</volume><issue>1</issue><spage>1037</spage><epage>1061</epage><pages>1037-1061</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>We investigate whether or not the low ionization fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stw013</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2016-03, Vol.457 (1), p.1037-1061 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816043334 |
source | Access via Oxford University Press (Open Access Collection) |
subjects | Astronomy Brake disks Braking Fluid mechanics Hall effect Magnetic fields Magnetism Magnetohydrodynamics Mathematical analysis Molecular clouds Simulation Vectors (mathematics) |
title | Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20non-ideal%20magnetohydrodynamics%20solve%20the%20magnetic%20braking%20catastrophe?&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Wurster,%20James&rft.date=2016-03-21&rft.volume=457&rft.issue=1&rft.spage=1037&rft.epage=1061&rft.pages=1037-1061&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stw013&rft_dat=%3Cproquest_TOX%3E4065623391%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790741198&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stw013&rfr_iscdi=true |