Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?

We investigate whether or not the low ionization fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2016-03, Vol.457 (1), p.1037-1061
Hauptverfasser: Wurster, James, Price, Daniel J., Bate, Matthew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1061
container_issue 1
container_start_page 1037
container_title Monthly notices of the Royal Astronomical Society
container_volume 457
creator Wurster, James
Price, Daniel J.
Bate, Matthew R.
description We investigate whether or not the low ionization fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core.
doi_str_mv 10.1093/mnras/stw013
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816043334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stw013</oup_id><sourcerecordid>4065623391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-7b2202241f6fc115116fdd3fbfe1932e1f96ffa7b9522048d45313dbe33b9dd63</originalsourceid><addsrcrecordid>eNqN0T1PwzAQBmALgUQpbPyASAwwEOqzEyeeEIr4VCUWmC0nttuUxA52Auq_J5BODIjphnt0ulcvQqeArwBzumitl2ER-k8MdA_NgLI0JpyxfTTDmKZxngEcoqMQNhjjhBI2Q0-FtJF1Nq6Vlk3UypXVvVtvlXdqa2VbVyEKrvnQUb_Wu3VdRaWXb7VdRZXsZei969b6-hgdGNkEfbKbc_R6d_tSPMTL5_vH4mYZV5TzPs5KQjAhCRhmKoAUgBmlqCmNBk6JBsOZMTIreTrCJFdJSoGqUlNacqUYnaOL6W7n3fugQy_aOlS6aaTVbggCcmBjOkqTf1Ccs_GDnIz07BfduMHbMYiAjOMsAeD5qC4nVXkXgtdGdL5upd8KwOK7A_HTgZg6GPn5xN3Q_S2_APFRiK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790741198</pqid></control><display><type>article</type><title>Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Wurster, James ; Price, Daniel J. ; Bate, Matthew R.</creator><creatorcontrib>Wurster, James ; Price, Daniel J. ; Bate, Matthew R.</creatorcontrib><description>We investigate whether or not the low ionization fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stw013</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astronomy ; Brake disks ; Braking ; Fluid mechanics ; Hall effect ; Magnetic fields ; Magnetism ; Magnetohydrodynamics ; Mathematical analysis ; Molecular clouds ; Simulation ; Vectors (mathematics)</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2016-03, Vol.457 (1), p.1037-1061</ispartof><rights>2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016</rights><rights>Copyright Oxford University Press, UK Mar 21, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-7b2202241f6fc115116fdd3fbfe1932e1f96ffa7b9522048d45313dbe33b9dd63</citedby><cites>FETCH-LOGICAL-c399t-7b2202241f6fc115116fdd3fbfe1932e1f96ffa7b9522048d45313dbe33b9dd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stw013$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Wurster, James</creatorcontrib><creatorcontrib>Price, Daniel J.</creatorcontrib><creatorcontrib>Bate, Matthew R.</creatorcontrib><title>Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?</title><title>Monthly notices of the Royal Astronomical Society</title><description>We investigate whether or not the low ionization fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core.</description><subject>Astronomy</subject><subject>Brake disks</subject><subject>Braking</subject><subject>Fluid mechanics</subject><subject>Hall effect</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Molecular clouds</subject><subject>Simulation</subject><subject>Vectors (mathematics)</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0T1PwzAQBmALgUQpbPyASAwwEOqzEyeeEIr4VCUWmC0nttuUxA52Auq_J5BODIjphnt0ulcvQqeArwBzumitl2ER-k8MdA_NgLI0JpyxfTTDmKZxngEcoqMQNhjjhBI2Q0-FtJF1Nq6Vlk3UypXVvVtvlXdqa2VbVyEKrvnQUb_Wu3VdRaWXb7VdRZXsZei969b6-hgdGNkEfbKbc_R6d_tSPMTL5_vH4mYZV5TzPs5KQjAhCRhmKoAUgBmlqCmNBk6JBsOZMTIreTrCJFdJSoGqUlNacqUYnaOL6W7n3fugQy_aOlS6aaTVbggCcmBjOkqTf1Ccs_GDnIz07BfduMHbMYiAjOMsAeD5qC4nVXkXgtdGdL5upd8KwOK7A_HTgZg6GPn5xN3Q_S2_APFRiK8</recordid><startdate>20160321</startdate><enddate>20160321</enddate><creator>Wurster, James</creator><creator>Price, Daniel J.</creator><creator>Bate, Matthew R.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20160321</creationdate><title>Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?</title><author>Wurster, James ; Price, Daniel J. ; Bate, Matthew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-7b2202241f6fc115116fdd3fbfe1932e1f96ffa7b9522048d45313dbe33b9dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Astronomy</topic><topic>Brake disks</topic><topic>Braking</topic><topic>Fluid mechanics</topic><topic>Hall effect</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Molecular clouds</topic><topic>Simulation</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wurster, James</creatorcontrib><creatorcontrib>Price, Daniel J.</creatorcontrib><creatorcontrib>Bate, Matthew R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wurster, James</au><au>Price, Daniel J.</au><au>Bate, Matthew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2016-03-21</date><risdate>2016</risdate><volume>457</volume><issue>1</issue><spage>1037</spage><epage>1061</epage><pages>1037-1061</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>We investigate whether or not the low ionization fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stw013</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2016-03, Vol.457 (1), p.1037-1061
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1816043334
source Access via Oxford University Press (Open Access Collection)
subjects Astronomy
Brake disks
Braking
Fluid mechanics
Hall effect
Magnetic fields
Magnetism
Magnetohydrodynamics
Mathematical analysis
Molecular clouds
Simulation
Vectors (mathematics)
title Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20non-ideal%20magnetohydrodynamics%20solve%20the%20magnetic%20braking%20catastrophe?&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Wurster,%20James&rft.date=2016-03-21&rft.volume=457&rft.issue=1&rft.spage=1037&rft.epage=1061&rft.pages=1037-1061&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stw013&rft_dat=%3Cproquest_TOX%3E4065623391%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790741198&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stw013&rfr_iscdi=true