Comparison of linear and nonlinear dimension reduction techniques for automated process monitoring of a decentralized wastewater treatment facility

Multivariate statistical methods for online process monitoring have been widely applied to chemical, biological, and engineered systems. While methods based on principal component analysis (PCA) are popular, more recently kernel PCA (KPCA) and locally linear embedding (LLE) have been utilized to bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment 2016-05, Vol.30 (5), p.1527-1544
Hauptverfasser: Kazor, Karen, Holloway, Ryan W., Cath, Tzahi Y., Hering, Amanda S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1544
container_issue 5
container_start_page 1527
container_title Stochastic environmental research and risk assessment
container_volume 30
creator Kazor, Karen
Holloway, Ryan W.
Cath, Tzahi Y.
Hering, Amanda S.
description Multivariate statistical methods for online process monitoring have been widely applied to chemical, biological, and engineered systems. While methods based on principal component analysis (PCA) are popular, more recently kernel PCA (KPCA) and locally linear embedding (LLE) have been utilized to better model nonlinear process data. Additionally, various forms of dynamic and adaptive monitoring schemes have been proposed to address time-varying features in these processes. In this analysis, we extend a common simulation study in order to account for autocorrelation and nonstationarity in process data and comprehensively compare the monitoring performances of static, dynamic, adaptive, and adaptive–dynamic versions of PCA, KPCA, and LLE. Furthermore, we evaluate a nonparametric method to set thresholds for monitoring statistics and compare results with the standard parametric approaches. We then apply these methods to real-world data collected from a decentralized wastewater treatment system during normal and abnormal operations. From the simulation study, adaptive–dynamic versions of all three methods generally improve results when the process is autocorrelated and nonstationary. In the case study, adaptive–dynamic versions of PCA, KPCA, and LLE all flag a strong system fault, but nonparametric thresholds considerably reduce the number of false alarms for all three methods under normal operating conditions.
doi_str_mv 10.1007/s00477-016-1246-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816042574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4062878441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-8f2d5053ec72c90b6a6f89a7c96eb3c6c9ec3940182511904d25730ae55937963</originalsourceid><addsrcrecordid>eNqNkc9qFTEUhwdpwdL2AdwFunEz9eT_ZCkXtUKhG7sOuZkzGplJbpMMpb5GX9gMt4gUBFc5ge87OSe_rntH4ZoC6A8FQGjdA1U9ZUL17E13RgVXPWfSnPypBbztLksJ--ZIbgyFs-55l5aDy6GkSNJE5hDRZeLiSGKKL7cxLBhLaETGcfV1qyr6HzE8rFjIlJqw1rS4iiM55OSxFLKkGGrKIX7f-joyosdYs5vDr0Y9ulLxsQmZ1IyutgcqmZwPc6hPF93p5OaCly_neXf_-dO33U1_e_fl6-7jbe_5wGo_TGyUIDl6zbyBvXJqGozT3ijcc6-8Qc-NADowSakBMTKpOTiU0nBtFD_v3h_7tpm3TapdQvE4zy5iWoulA1UgmiT-A4VBiUEx2dCrV-jPtObYFrFUG6CSCaYbRY-Uz6mUjJM95LC4_GQp2C1UewzVtlDtFqplzWFHpxy2f8X8V-d_Sr8BBVymnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790152427</pqid></control><display><type>article</type><title>Comparison of linear and nonlinear dimension reduction techniques for automated process monitoring of a decentralized wastewater treatment facility</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kazor, Karen ; Holloway, Ryan W. ; Cath, Tzahi Y. ; Hering, Amanda S.</creator><creatorcontrib>Kazor, Karen ; Holloway, Ryan W. ; Cath, Tzahi Y. ; Hering, Amanda S.</creatorcontrib><description>Multivariate statistical methods for online process monitoring have been widely applied to chemical, biological, and engineered systems. While methods based on principal component analysis (PCA) are popular, more recently kernel PCA (KPCA) and locally linear embedding (LLE) have been utilized to better model nonlinear process data. Additionally, various forms of dynamic and adaptive monitoring schemes have been proposed to address time-varying features in these processes. In this analysis, we extend a common simulation study in order to account for autocorrelation and nonstationarity in process data and comprehensively compare the monitoring performances of static, dynamic, adaptive, and adaptive–dynamic versions of PCA, KPCA, and LLE. Furthermore, we evaluate a nonparametric method to set thresholds for monitoring statistics and compare results with the standard parametric approaches. We then apply these methods to real-world data collected from a decentralized wastewater treatment system during normal and abnormal operations. From the simulation study, adaptive–dynamic versions of all three methods generally improve results when the process is autocorrelated and nonstationary. In the case study, adaptive–dynamic versions of PCA, KPCA, and LLE all flag a strong system fault, but nonparametric thresholds considerably reduce the number of false alarms for all three methods under normal operating conditions.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-016-1246-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Decentralized ; Dynamical systems ; Earth and Environmental Science ; Earth Sciences ; Environment ; Environmental monitoring ; Math. Appl. in Environmental Science ; Monitoring ; Multivariate analysis ; Nonlinear dynamics ; Nonlinearity ; Original Paper ; Physics ; Principal components analysis ; Probability Theory and Stochastic Processes ; Process controls ; Statistical methods ; Statistics for Engineering ; Thresholds ; Waste Water Technology ; Wastewater treatment ; Water Management ; Water Pollution Control ; Water treatment plants</subject><ispartof>Stochastic environmental research and risk assessment, 2016-05, Vol.30 (5), p.1527-1544</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-8f2d5053ec72c90b6a6f89a7c96eb3c6c9ec3940182511904d25730ae55937963</citedby><cites>FETCH-LOGICAL-c382t-8f2d5053ec72c90b6a6f89a7c96eb3c6c9ec3940182511904d25730ae55937963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-016-1246-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-016-1246-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kazor, Karen</creatorcontrib><creatorcontrib>Holloway, Ryan W.</creatorcontrib><creatorcontrib>Cath, Tzahi Y.</creatorcontrib><creatorcontrib>Hering, Amanda S.</creatorcontrib><title>Comparison of linear and nonlinear dimension reduction techniques for automated process monitoring of a decentralized wastewater treatment facility</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>Multivariate statistical methods for online process monitoring have been widely applied to chemical, biological, and engineered systems. While methods based on principal component analysis (PCA) are popular, more recently kernel PCA (KPCA) and locally linear embedding (LLE) have been utilized to better model nonlinear process data. Additionally, various forms of dynamic and adaptive monitoring schemes have been proposed to address time-varying features in these processes. In this analysis, we extend a common simulation study in order to account for autocorrelation and nonstationarity in process data and comprehensively compare the monitoring performances of static, dynamic, adaptive, and adaptive–dynamic versions of PCA, KPCA, and LLE. Furthermore, we evaluate a nonparametric method to set thresholds for monitoring statistics and compare results with the standard parametric approaches. We then apply these methods to real-world data collected from a decentralized wastewater treatment system during normal and abnormal operations. From the simulation study, adaptive–dynamic versions of all three methods generally improve results when the process is autocorrelated and nonstationary. In the case study, adaptive–dynamic versions of PCA, KPCA, and LLE all flag a strong system fault, but nonparametric thresholds considerably reduce the number of false alarms for all three methods under normal operating conditions.</description><subject>Aquatic Pollution</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Decentralized</subject><subject>Dynamical systems</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Math. Appl. in Environmental Science</subject><subject>Monitoring</subject><subject>Multivariate analysis</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Principal components analysis</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Process controls</subject><subject>Statistical methods</subject><subject>Statistics for Engineering</subject><subject>Thresholds</subject><subject>Waste Water Technology</subject><subject>Wastewater treatment</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water treatment plants</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc9qFTEUhwdpwdL2AdwFunEz9eT_ZCkXtUKhG7sOuZkzGplJbpMMpb5GX9gMt4gUBFc5ge87OSe_rntH4ZoC6A8FQGjdA1U9ZUL17E13RgVXPWfSnPypBbztLksJ--ZIbgyFs-55l5aDy6GkSNJE5hDRZeLiSGKKL7cxLBhLaETGcfV1qyr6HzE8rFjIlJqw1rS4iiM55OSxFLKkGGrKIX7f-joyosdYs5vDr0Y9ulLxsQmZ1IyutgcqmZwPc6hPF93p5OaCly_neXf_-dO33U1_e_fl6-7jbe_5wGo_TGyUIDl6zbyBvXJqGozT3ijcc6-8Qc-NADowSakBMTKpOTiU0nBtFD_v3h_7tpm3TapdQvE4zy5iWoulA1UgmiT-A4VBiUEx2dCrV-jPtObYFrFUG6CSCaYbRY-Uz6mUjJM95LC4_GQp2C1UewzVtlDtFqplzWFHpxy2f8X8V-d_Sr8BBVymnA</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Kazor, Karen</creator><creator>Holloway, Ryan W.</creator><creator>Cath, Tzahi Y.</creator><creator>Hering, Amanda S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope><scope>7TA</scope><scope>JG9</scope></search><sort><creationdate>20160501</creationdate><title>Comparison of linear and nonlinear dimension reduction techniques for automated process monitoring of a decentralized wastewater treatment facility</title><author>Kazor, Karen ; Holloway, Ryan W. ; Cath, Tzahi Y. ; Hering, Amanda S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-8f2d5053ec72c90b6a6f89a7c96eb3c6c9ec3940182511904d25730ae55937963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aquatic Pollution</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Decentralized</topic><topic>Dynamical systems</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Math. Appl. in Environmental Science</topic><topic>Monitoring</topic><topic>Multivariate analysis</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Principal components analysis</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Process controls</topic><topic>Statistical methods</topic><topic>Statistics for Engineering</topic><topic>Thresholds</topic><topic>Waste Water Technology</topic><topic>Wastewater treatment</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazor, Karen</creatorcontrib><creatorcontrib>Holloway, Ryan W.</creatorcontrib><creatorcontrib>Cath, Tzahi Y.</creatorcontrib><creatorcontrib>Hering, Amanda S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazor, Karen</au><au>Holloway, Ryan W.</au><au>Cath, Tzahi Y.</au><au>Hering, Amanda S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of linear and nonlinear dimension reduction techniques for automated process monitoring of a decentralized wastewater treatment facility</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>30</volume><issue>5</issue><spage>1527</spage><epage>1544</epage><pages>1527-1544</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>Multivariate statistical methods for online process monitoring have been widely applied to chemical, biological, and engineered systems. While methods based on principal component analysis (PCA) are popular, more recently kernel PCA (KPCA) and locally linear embedding (LLE) have been utilized to better model nonlinear process data. Additionally, various forms of dynamic and adaptive monitoring schemes have been proposed to address time-varying features in these processes. In this analysis, we extend a common simulation study in order to account for autocorrelation and nonstationarity in process data and comprehensively compare the monitoring performances of static, dynamic, adaptive, and adaptive–dynamic versions of PCA, KPCA, and LLE. Furthermore, we evaluate a nonparametric method to set thresholds for monitoring statistics and compare results with the standard parametric approaches. We then apply these methods to real-world data collected from a decentralized wastewater treatment system during normal and abnormal operations. From the simulation study, adaptive–dynamic versions of all three methods generally improve results when the process is autocorrelated and nonstationary. In the case study, adaptive–dynamic versions of PCA, KPCA, and LLE all flag a strong system fault, but nonparametric thresholds considerably reduce the number of false alarms for all three methods under normal operating conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-016-1246-2</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1436-3240
ispartof Stochastic environmental research and risk assessment, 2016-05, Vol.30 (5), p.1527-1544
issn 1436-3240
1436-3259
language eng
recordid cdi_proquest_miscellaneous_1816042574
source SpringerLink Journals - AutoHoldings
subjects Aquatic Pollution
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Decentralized
Dynamical systems
Earth and Environmental Science
Earth Sciences
Environment
Environmental monitoring
Math. Appl. in Environmental Science
Monitoring
Multivariate analysis
Nonlinear dynamics
Nonlinearity
Original Paper
Physics
Principal components analysis
Probability Theory and Stochastic Processes
Process controls
Statistical methods
Statistics for Engineering
Thresholds
Waste Water Technology
Wastewater treatment
Water Management
Water Pollution Control
Water treatment plants
title Comparison of linear and nonlinear dimension reduction techniques for automated process monitoring of a decentralized wastewater treatment facility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20linear%20and%20nonlinear%20dimension%20reduction%20techniques%20for%20automated%20process%20monitoring%20of%20a%20decentralized%20wastewater%20treatment%20facility&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Kazor,%20Karen&rft.date=2016-05-01&rft.volume=30&rft.issue=5&rft.spage=1527&rft.epage=1544&rft.pages=1527-1544&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-016-1246-2&rft_dat=%3Cproquest_cross%3E4062878441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790152427&rft_id=info:pmid/&rfr_iscdi=true