Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature

All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Q_{m}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2016-04, Vol.116 (14), p.147202-147202, Article 147202
Hauptverfasser: Norte, R A, Moura, J P, Gröblacher, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147202
container_issue 14
container_start_page 147202
container_title Physical review letters
container_volume 116
creator Norte, R A
Moura, J P
Gröblacher, S
description All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Q_{m} sufficient to enter the optomechanical quantum regime at room temperature. We overcome previous limitations by designing ultrathin, high-stress silicon nitride (Si_{3}N_{4}) membranes, with tensile stress in the resonators' clamps close to the ultimate yield strength of the material. By patterning a photonic crystal on the SiN membranes, we observe reflectivities greater than 99%. These on-chip resonators have remarkably low mechanical dissipation, with Q_{m}∼10^{8}, while at the same time exhibiting large reflectivities. This makes them a unique platform for experiments towards the observation of massive quantum behavior at room temperature.
doi_str_mv 10.1103/PhysRevLett.116.147202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816041099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1783912052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-50c69e9b13a00f23531bb7618c60b651797540879f4340b8d3cc676b3a9b51793</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMobk7_wsilN53nNG3SXMrwCybTMa9LkqVssjY1ScX9ezs2xUuvAm-e9xzOQ8gYYYII7OZlvQsL-zmzMfYBn2AmUkhPyBBByEQgZqdkCMAwkQBiQC5CeAcATHlxTgapQOgLbEjmz9asVbMxaksXNrhGRecDrZynr51qYlfTeRtdfaQCvftqrd_UtomBqkgXztV0aes-VLHz9pKcVWob7NXxHZG3-7vl9DGZzR-eprezxOSIMcnBcGmlRqYAqpTlDLUWHAvDQfMchRR5BoWQVcYy0MWKGcMF10xJvf9lI3J9mNt699HZEMt6E4zdblVjXRdKLJBDhiD_gYqCSUwhT3uUH1DjXQjeVmXb36r8rkQo997LP977gJcH731xfNzR6dqufms_otk3136AZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783912052</pqid></control><display><type>article</type><title>Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature</title><source>American Physical Society Journals</source><creator>Norte, R A ; Moura, J P ; Gröblacher, S</creator><creatorcontrib>Norte, R A ; Moura, J P ; Gröblacher, S</creatorcontrib><description>All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Q_{m} sufficient to enter the optomechanical quantum regime at room temperature. We overcome previous limitations by designing ultrathin, high-stress silicon nitride (Si_{3}N_{4}) membranes, with tensile stress in the resonators' clamps close to the ultimate yield strength of the material. By patterning a photonic crystal on the SiN membranes, we observe reflectivities greater than 99%. These on-chip resonators have remarkably low mechanical dissipation, with Q_{m}∼10^{8}, while at the same time exhibiting large reflectivities. This makes them a unique platform for experiments towards the observation of massive quantum behavior at room temperature.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.116.147202</identifier><identifier>PMID: 27104723</identifier><language>eng</language><publisher>United States</publisher><subject>Membranes ; Opto-mechanics ; Photonic crystals ; Quality factor ; Reflectivity ; Resonators ; Tensile stress ; Yield strength</subject><ispartof>Physical review letters, 2016-04, Vol.116 (14), p.147202-147202, Article 147202</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-50c69e9b13a00f23531bb7618c60b651797540879f4340b8d3cc676b3a9b51793</citedby><cites>FETCH-LOGICAL-c511t-50c69e9b13a00f23531bb7618c60b651797540879f4340b8d3cc676b3a9b51793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27104723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Norte, R A</creatorcontrib><creatorcontrib>Moura, J P</creatorcontrib><creatorcontrib>Gröblacher, S</creatorcontrib><title>Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Q_{m} sufficient to enter the optomechanical quantum regime at room temperature. We overcome previous limitations by designing ultrathin, high-stress silicon nitride (Si_{3}N_{4}) membranes, with tensile stress in the resonators' clamps close to the ultimate yield strength of the material. By patterning a photonic crystal on the SiN membranes, we observe reflectivities greater than 99%. These on-chip resonators have remarkably low mechanical dissipation, with Q_{m}∼10^{8}, while at the same time exhibiting large reflectivities. This makes them a unique platform for experiments towards the observation of massive quantum behavior at room temperature.</description><subject>Membranes</subject><subject>Opto-mechanics</subject><subject>Photonic crystals</subject><subject>Quality factor</subject><subject>Reflectivity</subject><subject>Resonators</subject><subject>Tensile stress</subject><subject>Yield strength</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkF1LwzAUhoMobk7_wsilN53nNG3SXMrwCybTMa9LkqVssjY1ScX9ezs2xUuvAm-e9xzOQ8gYYYII7OZlvQsL-zmzMfYBn2AmUkhPyBBByEQgZqdkCMAwkQBiQC5CeAcATHlxTgapQOgLbEjmz9asVbMxaksXNrhGRecDrZynr51qYlfTeRtdfaQCvftqrd_UtomBqkgXztV0aes-VLHz9pKcVWob7NXxHZG3-7vl9DGZzR-eprezxOSIMcnBcGmlRqYAqpTlDLUWHAvDQfMchRR5BoWQVcYy0MWKGcMF10xJvf9lI3J9mNt699HZEMt6E4zdblVjXRdKLJBDhiD_gYqCSUwhT3uUH1DjXQjeVmXb36r8rkQo997LP977gJcH731xfNzR6dqufms_otk3136AZg</recordid><startdate>20160408</startdate><enddate>20160408</enddate><creator>Norte, R A</creator><creator>Moura, J P</creator><creator>Gröblacher, S</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160408</creationdate><title>Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature</title><author>Norte, R A ; Moura, J P ; Gröblacher, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-50c69e9b13a00f23531bb7618c60b651797540879f4340b8d3cc676b3a9b51793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Membranes</topic><topic>Opto-mechanics</topic><topic>Photonic crystals</topic><topic>Quality factor</topic><topic>Reflectivity</topic><topic>Resonators</topic><topic>Tensile stress</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norte, R A</creatorcontrib><creatorcontrib>Moura, J P</creatorcontrib><creatorcontrib>Gröblacher, S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norte, R A</au><au>Moura, J P</au><au>Gröblacher, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2016-04-08</date><risdate>2016</risdate><volume>116</volume><issue>14</issue><spage>147202</spage><epage>147202</epage><pages>147202-147202</pages><artnum>147202</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Q_{m} sufficient to enter the optomechanical quantum regime at room temperature. We overcome previous limitations by designing ultrathin, high-stress silicon nitride (Si_{3}N_{4}) membranes, with tensile stress in the resonators' clamps close to the ultimate yield strength of the material. By patterning a photonic crystal on the SiN membranes, we observe reflectivities greater than 99%. These on-chip resonators have remarkably low mechanical dissipation, with Q_{m}∼10^{8}, while at the same time exhibiting large reflectivities. This makes them a unique platform for experiments towards the observation of massive quantum behavior at room temperature.</abstract><cop>United States</cop><pmid>27104723</pmid><doi>10.1103/PhysRevLett.116.147202</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2016-04, Vol.116 (14), p.147202-147202, Article 147202
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1816041099
source American Physical Society Journals
subjects Membranes
Opto-mechanics
Photonic crystals
Quality factor
Reflectivity
Resonators
Tensile stress
Yield strength
title Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Resonators%20for%20Quantum%20Optomechanics%20Experiments%20at%20Room%20Temperature&rft.jtitle=Physical%20review%20letters&rft.au=Norte,%20R%20A&rft.date=2016-04-08&rft.volume=116&rft.issue=14&rft.spage=147202&rft.epage=147202&rft.pages=147202-147202&rft.artnum=147202&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.116.147202&rft_dat=%3Cproquest_cross%3E1783912052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783912052&rft_id=info:pmid/27104723&rfr_iscdi=true