Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values
Missing values are a common phenomenon when dealing with real-world data sets. Analysis of incomplete data sets has become an active area of research. In this paper, we focus on the problem of clustering incomplete data, which is intended to introduce some prior distribution information of the missi...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2016-05, Vol.99, p.51-70 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | |
container_start_page | 51 |
container_title | Knowledge-based systems |
container_volume | 99 |
creator | Zhang, Liyong Lu, Wei Liu, Xiaodong Pedrycz, Witold Zhong, Chongquan |
description | Missing values are a common phenomenon when dealing with real-world data sets. Analysis of incomplete data sets has become an active area of research. In this paper, we focus on the problem of clustering incomplete data, which is intended to introduce some prior distribution information of the missing values into the algorithm of fuzzy clustering. First, non-parametric hypothesis testing is employed to describe the missing values adhering to a certain Gaussian distribution as probabilistic information granules based on the nearest neighbors of incomplete data. Second, we propose a novel clustering model, in which probabilistic information granules of missing values are incorporated into the Fuzzy C-Means clustering of incomplete data by involving the maximum likelihood criterion. Third, the clustering model is optimized by using a tri-level alternating optimization utilizing the method of Lagrange multipliers. The convergence and the time complexity of the clustering algorithm are also discussed. The experiments reported both on synthetic and real-world data sets demonstrate that the proposed approach can effectively realize clustering of incomplete data. |
doi_str_mv | 10.1016/j.knosys.2016.01.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816039018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705116000782</els_id><sourcerecordid>1816039018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-45f3db02db6e8d7e546a8ce9e69afcf629e29c285ab2a14e22152eeea45774953</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMcfcMiRS4Lt2nlckFBFAamIC5wtx9lULklcvE6l9utxFM6cVqudmZ0ZQu4YzRhl-cMu-x4cHjHjccsoy6goz8iClQVPC0Grc7KglaRpQSW7JFeIO0op56xcELseT6djskrfQQ-YmG7EAN4O28S1iR2M6_cdBEgaHXRSa4QmcUOy967Wte0sBmsirHW-18HGy9brYewAJ3pvESelg-5GwBty0eoO4fZvXpOv9fPn6jXdfLy8rZ42qZFChlTIdtnUlDd1DmVTgBS5Lg1UkFe6NW3OK-CV4aXUNddMQIwhOQBoIYtCVHJ5Te5n3WjyJ_4NKvow0HV6ADeiYiXL6bKirIxQMUONd4geWrX3ttf-qBhVU7Nqp-Zm1dSsokzFZiPtcaZBjHGw4BUaC4OBxnowQTXO_i_wC3eXhmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816039018</pqid></control><display><type>article</type><title>Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Liyong ; Lu, Wei ; Liu, Xiaodong ; Pedrycz, Witold ; Zhong, Chongquan</creator><creatorcontrib>Zhang, Liyong ; Lu, Wei ; Liu, Xiaodong ; Pedrycz, Witold ; Zhong, Chongquan</creatorcontrib><description>Missing values are a common phenomenon when dealing with real-world data sets. Analysis of incomplete data sets has become an active area of research. In this paper, we focus on the problem of clustering incomplete data, which is intended to introduce some prior distribution information of the missing values into the algorithm of fuzzy clustering. First, non-parametric hypothesis testing is employed to describe the missing values adhering to a certain Gaussian distribution as probabilistic information granules based on the nearest neighbors of incomplete data. Second, we propose a novel clustering model, in which probabilistic information granules of missing values are incorporated into the Fuzzy C-Means clustering of incomplete data by involving the maximum likelihood criterion. Third, the clustering model is optimized by using a tri-level alternating optimization utilizing the method of Lagrange multipliers. The convergence and the time complexity of the clustering algorithm are also discussed. The experiments reported both on synthetic and real-world data sets demonstrate that the proposed approach can effectively realize clustering of incomplete data.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2016.01.048</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Alternating optimization ; Clustering ; Fuzzy ; Fuzzy clustering ; Granular materials ; Granules ; Incomplete data ; Missing value ; Probabilistic information granules ; Probabilistic methods ; Probability theory</subject><ispartof>Knowledge-based systems, 2016-05, Vol.99, p.51-70</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-45f3db02db6e8d7e546a8ce9e69afcf629e29c285ab2a14e22152eeea45774953</citedby><cites>FETCH-LOGICAL-c545t-45f3db02db6e8d7e546a8ce9e69afcf629e29c285ab2a14e22152eeea45774953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705116000782$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zhang, Liyong</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Liu, Xiaodong</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><creatorcontrib>Zhong, Chongquan</creatorcontrib><title>Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values</title><title>Knowledge-based systems</title><description>Missing values are a common phenomenon when dealing with real-world data sets. Analysis of incomplete data sets has become an active area of research. In this paper, we focus on the problem of clustering incomplete data, which is intended to introduce some prior distribution information of the missing values into the algorithm of fuzzy clustering. First, non-parametric hypothesis testing is employed to describe the missing values adhering to a certain Gaussian distribution as probabilistic information granules based on the nearest neighbors of incomplete data. Second, we propose a novel clustering model, in which probabilistic information granules of missing values are incorporated into the Fuzzy C-Means clustering of incomplete data by involving the maximum likelihood criterion. Third, the clustering model is optimized by using a tri-level alternating optimization utilizing the method of Lagrange multipliers. The convergence and the time complexity of the clustering algorithm are also discussed. The experiments reported both on synthetic and real-world data sets demonstrate that the proposed approach can effectively realize clustering of incomplete data.</description><subject>Algorithms</subject><subject>Alternating optimization</subject><subject>Clustering</subject><subject>Fuzzy</subject><subject>Fuzzy clustering</subject><subject>Granular materials</subject><subject>Granules</subject><subject>Incomplete data</subject><subject>Missing value</subject><subject>Probabilistic information granules</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMcfcMiRS4Lt2nlckFBFAamIC5wtx9lULklcvE6l9utxFM6cVqudmZ0ZQu4YzRhl-cMu-x4cHjHjccsoy6goz8iClQVPC0Grc7KglaRpQSW7JFeIO0op56xcELseT6djskrfQQ-YmG7EAN4O28S1iR2M6_cdBEgaHXRSa4QmcUOy967Wte0sBmsirHW-18HGy9brYewAJ3pvESelg-5GwBty0eoO4fZvXpOv9fPn6jXdfLy8rZ42qZFChlTIdtnUlDd1DmVTgBS5Lg1UkFe6NW3OK-CV4aXUNddMQIwhOQBoIYtCVHJ5Te5n3WjyJ_4NKvow0HV6ADeiYiXL6bKirIxQMUONd4geWrX3ttf-qBhVU7Nqp-Zm1dSsokzFZiPtcaZBjHGw4BUaC4OBxnowQTXO_i_wC3eXhmw</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Zhang, Liyong</creator><creator>Lu, Wei</creator><creator>Liu, Xiaodong</creator><creator>Pedrycz, Witold</creator><creator>Zhong, Chongquan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160501</creationdate><title>Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values</title><author>Zhang, Liyong ; Lu, Wei ; Liu, Xiaodong ; Pedrycz, Witold ; Zhong, Chongquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-45f3db02db6e8d7e546a8ce9e69afcf629e29c285ab2a14e22152eeea45774953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Alternating optimization</topic><topic>Clustering</topic><topic>Fuzzy</topic><topic>Fuzzy clustering</topic><topic>Granular materials</topic><topic>Granules</topic><topic>Incomplete data</topic><topic>Missing value</topic><topic>Probabilistic information granules</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liyong</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Liu, Xiaodong</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><creatorcontrib>Zhong, Chongquan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liyong</au><au>Lu, Wei</au><au>Liu, Xiaodong</au><au>Pedrycz, Witold</au><au>Zhong, Chongquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values</atitle><jtitle>Knowledge-based systems</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>99</volume><spage>51</spage><epage>70</epage><pages>51-70</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Missing values are a common phenomenon when dealing with real-world data sets. Analysis of incomplete data sets has become an active area of research. In this paper, we focus on the problem of clustering incomplete data, which is intended to introduce some prior distribution information of the missing values into the algorithm of fuzzy clustering. First, non-parametric hypothesis testing is employed to describe the missing values adhering to a certain Gaussian distribution as probabilistic information granules based on the nearest neighbors of incomplete data. Second, we propose a novel clustering model, in which probabilistic information granules of missing values are incorporated into the Fuzzy C-Means clustering of incomplete data by involving the maximum likelihood criterion. Third, the clustering model is optimized by using a tri-level alternating optimization utilizing the method of Lagrange multipliers. The convergence and the time complexity of the clustering algorithm are also discussed. The experiments reported both on synthetic and real-world data sets demonstrate that the proposed approach can effectively realize clustering of incomplete data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2016.01.048</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2016-05, Vol.99, p.51-70 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816039018 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Alternating optimization Clustering Fuzzy Fuzzy clustering Granular materials Granules Incomplete data Missing value Probabilistic information granules Probabilistic methods Probability theory |
title | Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20C-Means%20clustering%20of%20incomplete%20data%20based%20on%20probabilistic%20information%20granules%20of%20missing%20values&rft.jtitle=Knowledge-based%20systems&rft.au=Zhang,%20Liyong&rft.date=2016-05-01&rft.volume=99&rft.spage=51&rft.epage=70&rft.pages=51-70&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2016.01.048&rft_dat=%3Cproquest_cross%3E1816039018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816039018&rft_id=info:pmid/&rft_els_id=S0950705116000782&rfr_iscdi=true |