Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values

Missing values are a common phenomenon when dealing with real-world data sets. Analysis of incomplete data sets has become an active area of research. In this paper, we focus on the problem of clustering incomplete data, which is intended to introduce some prior distribution information of the missi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2016-05, Vol.99, p.51-70
Hauptverfasser: Zhang, Liyong, Lu, Wei, Liu, Xiaodong, Pedrycz, Witold, Zhong, Chongquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue
container_start_page 51
container_title Knowledge-based systems
container_volume 99
creator Zhang, Liyong
Lu, Wei
Liu, Xiaodong
Pedrycz, Witold
Zhong, Chongquan
description Missing values are a common phenomenon when dealing with real-world data sets. Analysis of incomplete data sets has become an active area of research. In this paper, we focus on the problem of clustering incomplete data, which is intended to introduce some prior distribution information of the missing values into the algorithm of fuzzy clustering. First, non-parametric hypothesis testing is employed to describe the missing values adhering to a certain Gaussian distribution as probabilistic information granules based on the nearest neighbors of incomplete data. Second, we propose a novel clustering model, in which probabilistic information granules of missing values are incorporated into the Fuzzy C-Means clustering of incomplete data by involving the maximum likelihood criterion. Third, the clustering model is optimized by using a tri-level alternating optimization utilizing the method of Lagrange multipliers. The convergence and the time complexity of the clustering algorithm are also discussed. The experiments reported both on synthetic and real-world data sets demonstrate that the proposed approach can effectively realize clustering of incomplete data.
doi_str_mv 10.1016/j.knosys.2016.01.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816039018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705116000782</els_id><sourcerecordid>1816039018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-45f3db02db6e8d7e546a8ce9e69afcf629e29c285ab2a14e22152eeea45774953</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMcfcMiRS4Lt2nlckFBFAamIC5wtx9lULklcvE6l9utxFM6cVqudmZ0ZQu4YzRhl-cMu-x4cHjHjccsoy6goz8iClQVPC0Grc7KglaRpQSW7JFeIO0op56xcELseT6djskrfQQ-YmG7EAN4O28S1iR2M6_cdBEgaHXRSa4QmcUOy967Wte0sBmsirHW-18HGy9brYewAJ3pvESelg-5GwBty0eoO4fZvXpOv9fPn6jXdfLy8rZ42qZFChlTIdtnUlDd1DmVTgBS5Lg1UkFe6NW3OK-CV4aXUNddMQIwhOQBoIYtCVHJ5Te5n3WjyJ_4NKvow0HV6ADeiYiXL6bKirIxQMUONd4geWrX3ttf-qBhVU7Nqp-Zm1dSsokzFZiPtcaZBjHGw4BUaC4OBxnowQTXO_i_wC3eXhmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816039018</pqid></control><display><type>article</type><title>Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Liyong ; Lu, Wei ; Liu, Xiaodong ; Pedrycz, Witold ; Zhong, Chongquan</creator><creatorcontrib>Zhang, Liyong ; Lu, Wei ; Liu, Xiaodong ; Pedrycz, Witold ; Zhong, Chongquan</creatorcontrib><description>Missing values are a common phenomenon when dealing with real-world data sets. Analysis of incomplete data sets has become an active area of research. In this paper, we focus on the problem of clustering incomplete data, which is intended to introduce some prior distribution information of the missing values into the algorithm of fuzzy clustering. First, non-parametric hypothesis testing is employed to describe the missing values adhering to a certain Gaussian distribution as probabilistic information granules based on the nearest neighbors of incomplete data. Second, we propose a novel clustering model, in which probabilistic information granules of missing values are incorporated into the Fuzzy C-Means clustering of incomplete data by involving the maximum likelihood criterion. Third, the clustering model is optimized by using a tri-level alternating optimization utilizing the method of Lagrange multipliers. The convergence and the time complexity of the clustering algorithm are also discussed. The experiments reported both on synthetic and real-world data sets demonstrate that the proposed approach can effectively realize clustering of incomplete data.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2016.01.048</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Alternating optimization ; Clustering ; Fuzzy ; Fuzzy clustering ; Granular materials ; Granules ; Incomplete data ; Missing value ; Probabilistic information granules ; Probabilistic methods ; Probability theory</subject><ispartof>Knowledge-based systems, 2016-05, Vol.99, p.51-70</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-45f3db02db6e8d7e546a8ce9e69afcf629e29c285ab2a14e22152eeea45774953</citedby><cites>FETCH-LOGICAL-c545t-45f3db02db6e8d7e546a8ce9e69afcf629e29c285ab2a14e22152eeea45774953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705116000782$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zhang, Liyong</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Liu, Xiaodong</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><creatorcontrib>Zhong, Chongquan</creatorcontrib><title>Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values</title><title>Knowledge-based systems</title><description>Missing values are a common phenomenon when dealing with real-world data sets. Analysis of incomplete data sets has become an active area of research. In this paper, we focus on the problem of clustering incomplete data, which is intended to introduce some prior distribution information of the missing values into the algorithm of fuzzy clustering. First, non-parametric hypothesis testing is employed to describe the missing values adhering to a certain Gaussian distribution as probabilistic information granules based on the nearest neighbors of incomplete data. Second, we propose a novel clustering model, in which probabilistic information granules of missing values are incorporated into the Fuzzy C-Means clustering of incomplete data by involving the maximum likelihood criterion. Third, the clustering model is optimized by using a tri-level alternating optimization utilizing the method of Lagrange multipliers. The convergence and the time complexity of the clustering algorithm are also discussed. The experiments reported both on synthetic and real-world data sets demonstrate that the proposed approach can effectively realize clustering of incomplete data.</description><subject>Algorithms</subject><subject>Alternating optimization</subject><subject>Clustering</subject><subject>Fuzzy</subject><subject>Fuzzy clustering</subject><subject>Granular materials</subject><subject>Granules</subject><subject>Incomplete data</subject><subject>Missing value</subject><subject>Probabilistic information granules</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMcfcMiRS4Lt2nlckFBFAamIC5wtx9lULklcvE6l9utxFM6cVqudmZ0ZQu4YzRhl-cMu-x4cHjHjccsoy6goz8iClQVPC0Grc7KglaRpQSW7JFeIO0op56xcELseT6djskrfQQ-YmG7EAN4O28S1iR2M6_cdBEgaHXRSa4QmcUOy967Wte0sBmsirHW-18HGy9brYewAJ3pvESelg-5GwBty0eoO4fZvXpOv9fPn6jXdfLy8rZ42qZFChlTIdtnUlDd1DmVTgBS5Lg1UkFe6NW3OK-CV4aXUNddMQIwhOQBoIYtCVHJ5Te5n3WjyJ_4NKvow0HV6ADeiYiXL6bKirIxQMUONd4geWrX3ttf-qBhVU7Nqp-Zm1dSsokzFZiPtcaZBjHGw4BUaC4OBxnowQTXO_i_wC3eXhmw</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Zhang, Liyong</creator><creator>Lu, Wei</creator><creator>Liu, Xiaodong</creator><creator>Pedrycz, Witold</creator><creator>Zhong, Chongquan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160501</creationdate><title>Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values</title><author>Zhang, Liyong ; Lu, Wei ; Liu, Xiaodong ; Pedrycz, Witold ; Zhong, Chongquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-45f3db02db6e8d7e546a8ce9e69afcf629e29c285ab2a14e22152eeea45774953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Alternating optimization</topic><topic>Clustering</topic><topic>Fuzzy</topic><topic>Fuzzy clustering</topic><topic>Granular materials</topic><topic>Granules</topic><topic>Incomplete data</topic><topic>Missing value</topic><topic>Probabilistic information granules</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liyong</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Liu, Xiaodong</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><creatorcontrib>Zhong, Chongquan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liyong</au><au>Lu, Wei</au><au>Liu, Xiaodong</au><au>Pedrycz, Witold</au><au>Zhong, Chongquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values</atitle><jtitle>Knowledge-based systems</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>99</volume><spage>51</spage><epage>70</epage><pages>51-70</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Missing values are a common phenomenon when dealing with real-world data sets. Analysis of incomplete data sets has become an active area of research. In this paper, we focus on the problem of clustering incomplete data, which is intended to introduce some prior distribution information of the missing values into the algorithm of fuzzy clustering. First, non-parametric hypothesis testing is employed to describe the missing values adhering to a certain Gaussian distribution as probabilistic information granules based on the nearest neighbors of incomplete data. Second, we propose a novel clustering model, in which probabilistic information granules of missing values are incorporated into the Fuzzy C-Means clustering of incomplete data by involving the maximum likelihood criterion. Third, the clustering model is optimized by using a tri-level alternating optimization utilizing the method of Lagrange multipliers. The convergence and the time complexity of the clustering algorithm are also discussed. The experiments reported both on synthetic and real-world data sets demonstrate that the proposed approach can effectively realize clustering of incomplete data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2016.01.048</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2016-05, Vol.99, p.51-70
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_miscellaneous_1816039018
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Alternating optimization
Clustering
Fuzzy
Fuzzy clustering
Granular materials
Granules
Incomplete data
Missing value
Probabilistic information granules
Probabilistic methods
Probability theory
title Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20C-Means%20clustering%20of%20incomplete%20data%20based%20on%20probabilistic%20information%20granules%20of%20missing%20values&rft.jtitle=Knowledge-based%20systems&rft.au=Zhang,%20Liyong&rft.date=2016-05-01&rft.volume=99&rft.spage=51&rft.epage=70&rft.pages=51-70&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2016.01.048&rft_dat=%3Cproquest_cross%3E1816039018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816039018&rft_id=info:pmid/&rft_els_id=S0950705116000782&rfr_iscdi=true