Minimizing the Number of Edges via Edge Concentration in Dense Layered Graphs

Edge concentration in dense bipartite graphs is a technique for reducing the numbers of edges and edge crossings in graph drawings. The conventional method proposed by Newbery is designed to reduce the number of edge crossings; however, it does not always reduce the number of edges. Reducing the num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2016-06, Vol.22 (6), p.1652-1661, Article 1652
Hauptverfasser: Onoue, Yosuke, Kukimoto, Nobuyuki, Sakamoto, Naohisa, Koyamada, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1661
container_issue 6
container_start_page 1652
container_title IEEE transactions on visualization and computer graphics
container_volume 22
creator Onoue, Yosuke
Kukimoto, Nobuyuki
Sakamoto, Naohisa
Koyamada, Koji
description Edge concentration in dense bipartite graphs is a technique for reducing the numbers of edges and edge crossings in graph drawings. The conventional method proposed by Newbery is designed to reduce the number of edge crossings; however, it does not always reduce the number of edges. Reducing the number of edges is also an important factor for improving the readability of graphs. However, no edge concentration method with the explicit purpose of minimizing the number of edges has previously been studied. In this study, we propose a novel, efficient heuristic method for minimizing the number of edges during edge concentration. We demonstrate the efficiency of the proposed method via a comparison using randomly generated graphs. We find that Newbery's method fails to reduce the number of edges when the number of vertices is large. By contrast, the proposed method achieves an average compression ratio of 47 to 82 percent for all generated graph groups. We also present a real-world application of the proposed method using a causality network of biological data.
doi_str_mv 10.1109/TVCG.2016.2534519
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816035452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7422136</ieee_id><sourcerecordid>1826656988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-206e9f9e1506f1458ad7e4eae9ede5099c7bc7e67a992b0ec4bca993af2f9cf3</originalsourceid><addsrcrecordid>eNqNkU1v1DAURS0EoqXwAxASssSGTQY_f8ZLNJRppSlsRmwtx3lpXU2cwU4qlV9PpjN00UXFyndx7tWzDiHvgS0AmP2y-bVcLTgDveBKSAX2BTkFK6FiiumXc2bGVFxzfULelHLLGEhZ29fkhGurFBPilFxdxRT7-CemazreIP0x9Q1mOnT0vL3GQu-if0h0OaSAacx-jEOiMdFvmArStb_HjC1dZb-7KW_Jq85vC747vmdk8_18s7yo1j9Xl8uv6ypIo8eKM422swjzmR1IVfvWoESPFltUzNpgmmBQG28tbxgG2YQ5Ct_xzoZOnJHPh9ldHn5PWEbXxxJwu_UJh6k4qLnWStu6_g8UNBNKKj6jn56gt8OU0_wPx8FIwUEBe44CUxuwtajVTMGBCnkoJWPndjn2Pt87YG7vzu3dub07d3Q3dz4el6emx_ax8U_WDJgnoyGODz5mLXH77PSHQzMi4uOwkZyD0OIvduqsuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787198385</pqid></control><display><type>article</type><title>Minimizing the Number of Edges via Edge Concentration in Dense Layered Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Onoue, Yosuke ; Kukimoto, Nobuyuki ; Sakamoto, Naohisa ; Koyamada, Koji</creator><creatorcontrib>Onoue, Yosuke ; Kukimoto, Nobuyuki ; Sakamoto, Naohisa ; Koyamada, Koji</creatorcontrib><description>Edge concentration in dense bipartite graphs is a technique for reducing the numbers of edges and edge crossings in graph drawings. The conventional method proposed by Newbery is designed to reduce the number of edge crossings; however, it does not always reduce the number of edges. Reducing the number of edges is also an important factor for improving the readability of graphs. However, no edge concentration method with the explicit purpose of minimizing the number of edges has previously been studied. In this study, we propose a novel, efficient heuristic method for minimizing the number of edges during edge concentration. We demonstrate the efficiency of the proposed method via a comparison using randomly generated graphs. We find that Newbery's method fails to reduce the number of edges when the number of vertices is large. By contrast, the proposed method achieves an average compression ratio of 47 to 82 percent for all generated graph groups. We also present a real-world application of the proposed method using a causality network of biological data.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2016.2534519</identifier><identifier>PMID: 26955033</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Apexes ; Biological ; Biology ; Bipartite graph ; Compression ratio ; Computer graphics ; Data visualization ; edge concentration ; Graph drawing ; Graph theory ; Graphs ; Heuristic algorithms ; Heuristic methods ; layered drawing ; Networks ; Semantics ; Software ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2016-06, Vol.22 (6), p.1652-1661, Article 1652</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-206e9f9e1506f1458ad7e4eae9ede5099c7bc7e67a992b0ec4bca993af2f9cf3</citedby><cites>FETCH-LOGICAL-c476t-206e9f9e1506f1458ad7e4eae9ede5099c7bc7e67a992b0ec4bca993af2f9cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7422136$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7422136$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26955033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Onoue, Yosuke</creatorcontrib><creatorcontrib>Kukimoto, Nobuyuki</creatorcontrib><creatorcontrib>Sakamoto, Naohisa</creatorcontrib><creatorcontrib>Koyamada, Koji</creatorcontrib><title>Minimizing the Number of Edges via Edge Concentration in Dense Layered Graphs</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Edge concentration in dense bipartite graphs is a technique for reducing the numbers of edges and edge crossings in graph drawings. The conventional method proposed by Newbery is designed to reduce the number of edge crossings; however, it does not always reduce the number of edges. Reducing the number of edges is also an important factor for improving the readability of graphs. However, no edge concentration method with the explicit purpose of minimizing the number of edges has previously been studied. In this study, we propose a novel, efficient heuristic method for minimizing the number of edges during edge concentration. We demonstrate the efficiency of the proposed method via a comparison using randomly generated graphs. We find that Newbery's method fails to reduce the number of edges when the number of vertices is large. By contrast, the proposed method achieves an average compression ratio of 47 to 82 percent for all generated graph groups. We also present a real-world application of the proposed method using a causality network of biological data.</description><subject>Apexes</subject><subject>Biological</subject><subject>Biology</subject><subject>Bipartite graph</subject><subject>Compression ratio</subject><subject>Computer graphics</subject><subject>Data visualization</subject><subject>edge concentration</subject><subject>Graph drawing</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>layered drawing</subject><subject>Networks</subject><subject>Semantics</subject><subject>Software</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1v1DAURS0EoqXwAxASssSGTQY_f8ZLNJRppSlsRmwtx3lpXU2cwU4qlV9PpjN00UXFyndx7tWzDiHvgS0AmP2y-bVcLTgDveBKSAX2BTkFK6FiiumXc2bGVFxzfULelHLLGEhZ29fkhGurFBPilFxdxRT7-CemazreIP0x9Q1mOnT0vL3GQu-if0h0OaSAacx-jEOiMdFvmArStb_HjC1dZb-7KW_Jq85vC747vmdk8_18s7yo1j9Xl8uv6ypIo8eKM422swjzmR1IVfvWoESPFltUzNpgmmBQG28tbxgG2YQ5Ct_xzoZOnJHPh9ldHn5PWEbXxxJwu_UJh6k4qLnWStu6_g8UNBNKKj6jn56gt8OU0_wPx8FIwUEBe44CUxuwtajVTMGBCnkoJWPndjn2Pt87YG7vzu3dub07d3Q3dz4el6emx_ax8U_WDJgnoyGODz5mLXH77PSHQzMi4uOwkZyD0OIvduqsuw</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Onoue, Yosuke</creator><creator>Kukimoto, Nobuyuki</creator><creator>Sakamoto, Naohisa</creator><creator>Koyamada, Koji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20160601</creationdate><title>Minimizing the Number of Edges via Edge Concentration in Dense Layered Graphs</title><author>Onoue, Yosuke ; Kukimoto, Nobuyuki ; Sakamoto, Naohisa ; Koyamada, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-206e9f9e1506f1458ad7e4eae9ede5099c7bc7e67a992b0ec4bca993af2f9cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Apexes</topic><topic>Biological</topic><topic>Biology</topic><topic>Bipartite graph</topic><topic>Compression ratio</topic><topic>Computer graphics</topic><topic>Data visualization</topic><topic>edge concentration</topic><topic>Graph drawing</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>layered drawing</topic><topic>Networks</topic><topic>Semantics</topic><topic>Software</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Onoue, Yosuke</creatorcontrib><creatorcontrib>Kukimoto, Nobuyuki</creatorcontrib><creatorcontrib>Sakamoto, Naohisa</creatorcontrib><creatorcontrib>Koyamada, Koji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Onoue, Yosuke</au><au>Kukimoto, Nobuyuki</au><au>Sakamoto, Naohisa</au><au>Koyamada, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimizing the Number of Edges via Edge Concentration in Dense Layered Graphs</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>22</volume><issue>6</issue><spage>1652</spage><epage>1661</epage><pages>1652-1661</pages><artnum>1652</artnum><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Edge concentration in dense bipartite graphs is a technique for reducing the numbers of edges and edge crossings in graph drawings. The conventional method proposed by Newbery is designed to reduce the number of edge crossings; however, it does not always reduce the number of edges. Reducing the number of edges is also an important factor for improving the readability of graphs. However, no edge concentration method with the explicit purpose of minimizing the number of edges has previously been studied. In this study, we propose a novel, efficient heuristic method for minimizing the number of edges during edge concentration. We demonstrate the efficiency of the proposed method via a comparison using randomly generated graphs. We find that Newbery's method fails to reduce the number of edges when the number of vertices is large. By contrast, the proposed method achieves an average compression ratio of 47 to 82 percent for all generated graph groups. We also present a real-world application of the proposed method using a causality network of biological data.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26955033</pmid><doi>10.1109/TVCG.2016.2534519</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2016-06, Vol.22 (6), p.1652-1661, Article 1652
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_1816035452
source IEEE Electronic Library (IEL)
subjects Apexes
Biological
Biology
Bipartite graph
Compression ratio
Computer graphics
Data visualization
edge concentration
Graph drawing
Graph theory
Graphs
Heuristic algorithms
Heuristic methods
layered drawing
Networks
Semantics
Software
Visualization
title Minimizing the Number of Edges via Edge Concentration in Dense Layered Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimizing%20the%20Number%20of%20Edges%20via%20Edge%20Concentration%20in%20Dense%20Layered%20Graphs&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Onoue,%20Yosuke&rft.date=2016-06-01&rft.volume=22&rft.issue=6&rft.spage=1652&rft.epage=1661&rft.pages=1652-1661&rft.artnum=1652&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2016.2534519&rft_dat=%3Cproquest_RIE%3E1826656988%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787198385&rft_id=info:pmid/26955033&rft_ieee_id=7422136&rfr_iscdi=true