Neural network approach for T-wave end detection: A comparison of architectures
In this paper, a new approach to the problem of detecting the end of the T wave (Te) on the electrocardiogram (ECG) using Multilayer Perceptron (MLP) neural networks is proposed and evaluated. The approach consists of a neural network acting as a regression function that estimates the Te location us...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 592 |
---|---|
container_issue | |
container_start_page | 589 |
container_title | |
container_volume | |
creator | Suarez Leon, Alexander A. Matos Molina, Danelia Vazquez Seisdedos, Carlos R. Goovaerts, Griet Vandeput, Steven Van Huffel, Sabine |
description | In this paper, a new approach to the problem of detecting the end of the T wave (Te) on the electrocardiogram (ECG) using Multilayer Perceptron (MLP) neural networks is proposed and evaluated. The approach consists of a neural network acting as a regression function that estimates the Te location using the samples between two consecutive R peaks. The input vectors were taken using three dimensional reduction methods (Discrete Cosine Transform, DCT, Principal Component Analysis, PCA and resampling, RES) over a window of 100 samples. For training, Bayesian regularization has been used. A total of 1536 neural networks were trained. The results show that PCA and DCT are more feasible than RES as dimension reduction methods. Finally, a brief comparison with other algorithms proposed in the literature is included. |
doi_str_mv | 10.1109/CIC.2015.7410979 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816032189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7410979</ieee_id><sourcerecordid>1816032189</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-ae5e9d4443e46992312bd07df532ecfbf3df899712a9500c8f3aa0b532163dc93</originalsourceid><addsrcrecordid>eNpVkM9LwzAUx-MvcMzdBS85eunMj6ZJvI0ydTDcZYK3kqUvrNo1NWkd_vd2bAi-y-Px-fDly0PolpIppUQ_5It8yggVU5kOp9RnaKKlooJoQjKVynM0YpyJRCn5fvGPifTyj2X0Gk1i_CDDCKl0pkZo9Qp9MDVuoNv78IlN2wZv7BY7H_A62ZtvwNCUuIQObFf55hHPsPW71oQq-gZ7h02w2-pA-wDxBl05U0eYnPYYvT3N1_lLslw9L_LZMqkYUV1iQIAu0zTlkGZaM07ZpiSydIIzsG7jeOmU1pIyowUhVjluDNkMlGa8tJqP0f0xd6j71UPsil0VLdS1acD3saCKZmSw1UG9O6oVABRtqHYm_BSnT_JfgHFhzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1816032189</pqid></control><display><type>conference_proceeding</type><title>Neural network approach for T-wave end detection: A comparison of architectures</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Suarez Leon, Alexander A. ; Matos Molina, Danelia ; Vazquez Seisdedos, Carlos R. ; Goovaerts, Griet ; Vandeput, Steven ; Van Huffel, Sabine</creator><creatorcontrib>Suarez Leon, Alexander A. ; Matos Molina, Danelia ; Vazquez Seisdedos, Carlos R. ; Goovaerts, Griet ; Vandeput, Steven ; Van Huffel, Sabine</creatorcontrib><description>In this paper, a new approach to the problem of detecting the end of the T wave (Te) on the electrocardiogram (ECG) using Multilayer Perceptron (MLP) neural networks is proposed and evaluated. The approach consists of a neural network acting as a regression function that estimates the Te location using the samples between two consecutive R peaks. The input vectors were taken using three dimensional reduction methods (Discrete Cosine Transform, DCT, Principal Component Analysis, PCA and resampling, RES) over a window of 100 samples. For training, Bayesian regularization has been used. A total of 1536 neural networks were trained. The results show that PCA and DCT are more feasible than RES as dimension reduction methods. Finally, a brief comparison with other algorithms proposed in the literature is included.</description><identifier>ISSN: 2325-8861</identifier><identifier>ISBN: 9781509006854</identifier><identifier>ISBN: 1509006850</identifier><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9781509006847</identifier><identifier>EISBN: 1509006842</identifier><identifier>DOI: 10.1109/CIC.2015.7410979</identifier><language>eng</language><publisher>CCAL</publisher><subject>Algorithms ; Bayes methods ; Cardiology ; Computation ; Detection algorithms ; Eigenvalues and eigenfunctions ; Heart ; Mathematical analysis ; Neural networks ; Principal component analysis ; Reduction ; Three dimensional ; Training</subject><ispartof>2015 Computing in Cardiology Conference (CinC), 2015, p.589-592</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,27901,27902</link.rule.ids></links><search><creatorcontrib>Suarez Leon, Alexander A.</creatorcontrib><creatorcontrib>Matos Molina, Danelia</creatorcontrib><creatorcontrib>Vazquez Seisdedos, Carlos R.</creatorcontrib><creatorcontrib>Goovaerts, Griet</creatorcontrib><creatorcontrib>Vandeput, Steven</creatorcontrib><creatorcontrib>Van Huffel, Sabine</creatorcontrib><title>Neural network approach for T-wave end detection: A comparison of architectures</title><title>2015 Computing in Cardiology Conference (CinC)</title><addtitle>CIC</addtitle><description>In this paper, a new approach to the problem of detecting the end of the T wave (Te) on the electrocardiogram (ECG) using Multilayer Perceptron (MLP) neural networks is proposed and evaluated. The approach consists of a neural network acting as a regression function that estimates the Te location using the samples between two consecutive R peaks. The input vectors were taken using three dimensional reduction methods (Discrete Cosine Transform, DCT, Principal Component Analysis, PCA and resampling, RES) over a window of 100 samples. For training, Bayesian regularization has been used. A total of 1536 neural networks were trained. The results show that PCA and DCT are more feasible than RES as dimension reduction methods. Finally, a brief comparison with other algorithms proposed in the literature is included.</description><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Cardiology</subject><subject>Computation</subject><subject>Detection algorithms</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Heart</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Principal component analysis</subject><subject>Reduction</subject><subject>Three dimensional</subject><subject>Training</subject><issn>2325-8861</issn><issn>2325-887X</issn><isbn>9781509006854</isbn><isbn>1509006850</isbn><isbn>9781509006847</isbn><isbn>1509006842</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM9LwzAUx-MvcMzdBS85eunMj6ZJvI0ydTDcZYK3kqUvrNo1NWkd_vd2bAi-y-Px-fDly0PolpIppUQ_5It8yggVU5kOp9RnaKKlooJoQjKVynM0YpyJRCn5fvGPifTyj2X0Gk1i_CDDCKl0pkZo9Qp9MDVuoNv78IlN2wZv7BY7H_A62ZtvwNCUuIQObFf55hHPsPW71oQq-gZ7h02w2-pA-wDxBl05U0eYnPYYvT3N1_lLslw9L_LZMqkYUV1iQIAu0zTlkGZaM07ZpiSydIIzsG7jeOmU1pIyowUhVjluDNkMlGa8tJqP0f0xd6j71UPsil0VLdS1acD3saCKZmSw1UG9O6oVABRtqHYm_BSnT_JfgHFhzg</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Suarez Leon, Alexander A.</creator><creator>Matos Molina, Danelia</creator><creator>Vazquez Seisdedos, Carlos R.</creator><creator>Goovaerts, Griet</creator><creator>Vandeput, Steven</creator><creator>Van Huffel, Sabine</creator><general>CCAL</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150901</creationdate><title>Neural network approach for T-wave end detection: A comparison of architectures</title><author>Suarez Leon, Alexander A. ; Matos Molina, Danelia ; Vazquez Seisdedos, Carlos R. ; Goovaerts, Griet ; Vandeput, Steven ; Van Huffel, Sabine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-ae5e9d4443e46992312bd07df532ecfbf3df899712a9500c8f3aa0b532163dc93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Cardiology</topic><topic>Computation</topic><topic>Detection algorithms</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Heart</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Principal component analysis</topic><topic>Reduction</topic><topic>Three dimensional</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Suarez Leon, Alexander A.</creatorcontrib><creatorcontrib>Matos Molina, Danelia</creatorcontrib><creatorcontrib>Vazquez Seisdedos, Carlos R.</creatorcontrib><creatorcontrib>Goovaerts, Griet</creatorcontrib><creatorcontrib>Vandeput, Steven</creatorcontrib><creatorcontrib>Van Huffel, Sabine</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suarez Leon, Alexander A.</au><au>Matos Molina, Danelia</au><au>Vazquez Seisdedos, Carlos R.</au><au>Goovaerts, Griet</au><au>Vandeput, Steven</au><au>Van Huffel, Sabine</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network approach for T-wave end detection: A comparison of architectures</atitle><btitle>2015 Computing in Cardiology Conference (CinC)</btitle><stitle>CIC</stitle><date>2015-09-01</date><risdate>2015</risdate><spage>589</spage><epage>592</epage><pages>589-592</pages><issn>2325-8861</issn><eissn>2325-887X</eissn><isbn>9781509006854</isbn><isbn>1509006850</isbn><eisbn>9781509006847</eisbn><eisbn>1509006842</eisbn><abstract>In this paper, a new approach to the problem of detecting the end of the T wave (Te) on the electrocardiogram (ECG) using Multilayer Perceptron (MLP) neural networks is proposed and evaluated. The approach consists of a neural network acting as a regression function that estimates the Te location using the samples between two consecutive R peaks. The input vectors were taken using three dimensional reduction methods (Discrete Cosine Transform, DCT, Principal Component Analysis, PCA and resampling, RES) over a window of 100 samples. For training, Bayesian regularization has been used. A total of 1536 neural networks were trained. The results show that PCA and DCT are more feasible than RES as dimension reduction methods. Finally, a brief comparison with other algorithms proposed in the literature is included.</abstract><pub>CCAL</pub><doi>10.1109/CIC.2015.7410979</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2325-8861 |
ispartof | 2015 Computing in Cardiology Conference (CinC), 2015, p.589-592 |
issn | 2325-8861 2325-887X |
language | eng |
recordid | cdi_proquest_miscellaneous_1816032189 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Bayes methods Cardiology Computation Detection algorithms Eigenvalues and eigenfunctions Heart Mathematical analysis Neural networks Principal component analysis Reduction Three dimensional Training |
title | Neural network approach for T-wave end detection: A comparison of architectures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20approach%20for%20T-wave%20end%20detection:%20A%20comparison%20of%20architectures&rft.btitle=2015%20Computing%20in%20Cardiology%20Conference%20(CinC)&rft.au=Suarez%20Leon,%20Alexander%20A.&rft.date=2015-09-01&rft.spage=589&rft.epage=592&rft.pages=589-592&rft.issn=2325-8861&rft.eissn=2325-887X&rft.isbn=9781509006854&rft.isbn_list=1509006850&rft_id=info:doi/10.1109/CIC.2015.7410979&rft_dat=%3Cproquest_ieee_%3E1816032189%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781509006847&rft.eisbn_list=1509006842&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816032189&rft_id=info:pmid/&rft_ieee_id=7410979&rfr_iscdi=true |