Analytical expressions for three-phase generalized relative permeabilities in water- and oil-wet capillary tubes
We analyze three-phase flow of immiscible fluids taking place within an elementary capillary tube with circular cross-section under water- and oil-wet conditions. We account explicitly for momentum transfer between the moving phases, which leads to the phenomenon of viscous coupling, by imposing con...
Gespeichert in:
Veröffentlicht in: | Computational geosciences 2016-06, Vol.20 (3), p.555-565 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 565 |
---|---|
container_issue | 3 |
container_start_page | 555 |
container_title | Computational geosciences |
container_volume | 20 |
creator | Bianchi Janetti, Emanuela Riva, Monica Guadagnini, Alberto |
description | We analyze three-phase flow of immiscible fluids taking place within an elementary capillary tube with circular cross-section under water- and oil-wet conditions. We account explicitly for momentum transfer between the moving phases, which leads to the phenomenon of viscous coupling, by imposing continuity of velocity and shear stress at fluid-fluid interfaces. The macroscopic flow model which describes the system at the Darcy scale includes three-phase effective relative permeabilities,
K
i
j
,
r
, accounting for the flux of the
i
th phase due to the presence of the
j
th phase. These effective parameters strongly depend on phase saturations, fluid viscosities, and wettability of the solid matrix. In the considered flow setting,
K
i
j
,
r
reduce to a set of nine scalar quantities,
K
i
j
,
r
. Our results show that
K
i
j
,
r
of the wetting phase is a function only of the fluid phase own saturation. Otherwise,
K
i
j
,
r
of the non-wetting phase depends on the saturation of all fluids in the system and on oil and water viscosities. Viscous coupling effects (encapsulated in
K
i
j
,
r
with
i
≠
j
) can be significantly relevant in both water- and oil-wet systems. Wettability conditions influence oil flow at a rate that increases linearly with viscosity ratio between oil and water phases. |
doi_str_mv | 10.1007/s10596-015-9508-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816032010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816032010</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-e7dc20f64cf4ab686f1087baedf6788227d70190e8a368456bd4457245a1d79d3</originalsourceid><addsrcrecordid>eNp1kTtPwzAUhSMEEqXwA9gssbAYrhM7Tsaq4iVVYoHZcpKb1pWbBNuhwK_HVRgQEtO9w3fOfZwkuWRwwwDkrWcgypwCE7QUUFBxlMyYkBllvCyPY89ToBGRp8mZ91sAKGXGZsmw6LT9DKbWluDH4NB703eetL0jYeMQ6bDRHskaO3Tami9siEOrg3lHMqDboa6MNcGgJ6Yjex3QUaK7hvTG0j0GUuvBWKvdJwljhf48OWm19XjxU-fJ6_3dy_KRrp4fnpaLFdWZTANF2dQptDmvW66rvMhbBoWsNDZtLosiTWUjgZWAhc7ygou8ajgXMuVCs0aWTTZPriffwfVvI_qgdsbXGDfpsB-9YgXLIUuBQUSv_qDbfnTxL5GKs3jJMs4jxSaqdr33Dls1OLOLdykG6pCBmjJQMQN1yECJqEknjY9st0b3y_lf0TcYCoqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788491344</pqid></control><display><type>article</type><title>Analytical expressions for three-phase generalized relative permeabilities in water- and oil-wet capillary tubes</title><source>SpringerNature Journals</source><creator>Bianchi Janetti, Emanuela ; Riva, Monica ; Guadagnini, Alberto</creator><creatorcontrib>Bianchi Janetti, Emanuela ; Riva, Monica ; Guadagnini, Alberto</creatorcontrib><description>We analyze three-phase flow of immiscible fluids taking place within an elementary capillary tube with circular cross-section under water- and oil-wet conditions. We account explicitly for momentum transfer between the moving phases, which leads to the phenomenon of viscous coupling, by imposing continuity of velocity and shear stress at fluid-fluid interfaces. The macroscopic flow model which describes the system at the Darcy scale includes three-phase effective relative permeabilities,
K
i
j
,
r
, accounting for the flux of the
i
th phase due to the presence of the
j
th phase. These effective parameters strongly depend on phase saturations, fluid viscosities, and wettability of the solid matrix. In the considered flow setting,
K
i
j
,
r
reduce to a set of nine scalar quantities,
K
i
j
,
r
. Our results show that
K
i
j
,
r
of the wetting phase is a function only of the fluid phase own saturation. Otherwise,
K
i
j
,
r
of the non-wetting phase depends on the saturation of all fluids in the system and on oil and water viscosities. Viscous coupling effects (encapsulated in
K
i
j
,
r
with
i
≠
j
) can be significantly relevant in both water- and oil-wet systems. Wettability conditions influence oil flow at a rate that increases linearly with viscosity ratio between oil and water phases.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-015-9508-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Capillarity ; Computational fluid dynamics ; Earth and Environmental Science ; Earth Sciences ; Fluid flow ; Fluid mechanics ; Fluids ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Momentum transfer ; Oil recovery ; Original Paper ; Permeability ; Phases ; Porous materials ; Saturation ; Shear stress ; Soil Science & Conservation ; Viscosity ; Wettability</subject><ispartof>Computational geosciences, 2016-06, Vol.20 (3), p.555-565</ispartof><rights>Springer International Publishing Switzerland 2015</rights><rights>Springer International Publishing Switzerland 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-e7dc20f64cf4ab686f1087baedf6788227d70190e8a368456bd4457245a1d79d3</citedby><cites>FETCH-LOGICAL-a372t-e7dc20f64cf4ab686f1087baedf6788227d70190e8a368456bd4457245a1d79d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-015-9508-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-015-9508-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bianchi Janetti, Emanuela</creatorcontrib><creatorcontrib>Riva, Monica</creatorcontrib><creatorcontrib>Guadagnini, Alberto</creatorcontrib><title>Analytical expressions for three-phase generalized relative permeabilities in water- and oil-wet capillary tubes</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>We analyze three-phase flow of immiscible fluids taking place within an elementary capillary tube with circular cross-section under water- and oil-wet conditions. We account explicitly for momentum transfer between the moving phases, which leads to the phenomenon of viscous coupling, by imposing continuity of velocity and shear stress at fluid-fluid interfaces. The macroscopic flow model which describes the system at the Darcy scale includes three-phase effective relative permeabilities,
K
i
j
,
r
, accounting for the flux of the
i
th phase due to the presence of the
j
th phase. These effective parameters strongly depend on phase saturations, fluid viscosities, and wettability of the solid matrix. In the considered flow setting,
K
i
j
,
r
reduce to a set of nine scalar quantities,
K
i
j
,
r
. Our results show that
K
i
j
,
r
of the wetting phase is a function only of the fluid phase own saturation. Otherwise,
K
i
j
,
r
of the non-wetting phase depends on the saturation of all fluids in the system and on oil and water viscosities. Viscous coupling effects (encapsulated in
K
i
j
,
r
with
i
≠
j
) can be significantly relevant in both water- and oil-wet systems. Wettability conditions influence oil flow at a rate that increases linearly with viscosity ratio between oil and water phases.</description><subject>Capillarity</subject><subject>Computational fluid dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Momentum transfer</subject><subject>Oil recovery</subject><subject>Original Paper</subject><subject>Permeability</subject><subject>Phases</subject><subject>Porous materials</subject><subject>Saturation</subject><subject>Shear stress</subject><subject>Soil Science & Conservation</subject><subject>Viscosity</subject><subject>Wettability</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kTtPwzAUhSMEEqXwA9gssbAYrhM7Tsaq4iVVYoHZcpKb1pWbBNuhwK_HVRgQEtO9w3fOfZwkuWRwwwDkrWcgypwCE7QUUFBxlMyYkBllvCyPY89ToBGRp8mZ91sAKGXGZsmw6LT9DKbWluDH4NB703eetL0jYeMQ6bDRHskaO3Tami9siEOrg3lHMqDboa6MNcGgJ6Yjex3QUaK7hvTG0j0GUuvBWKvdJwljhf48OWm19XjxU-fJ6_3dy_KRrp4fnpaLFdWZTANF2dQptDmvW66rvMhbBoWsNDZtLosiTWUjgZWAhc7ygou8ajgXMuVCs0aWTTZPriffwfVvI_qgdsbXGDfpsB-9YgXLIUuBQUSv_qDbfnTxL5GKs3jJMs4jxSaqdr33Dls1OLOLdykG6pCBmjJQMQN1yECJqEknjY9st0b3y_lf0TcYCoqU</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Bianchi Janetti, Emanuela</creator><creator>Riva, Monica</creator><creator>Guadagnini, Alberto</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160601</creationdate><title>Analytical expressions for three-phase generalized relative permeabilities in water- and oil-wet capillary tubes</title><author>Bianchi Janetti, Emanuela ; Riva, Monica ; Guadagnini, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-e7dc20f64cf4ab686f1087baedf6788227d70190e8a368456bd4457245a1d79d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Capillarity</topic><topic>Computational fluid dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Momentum transfer</topic><topic>Oil recovery</topic><topic>Original Paper</topic><topic>Permeability</topic><topic>Phases</topic><topic>Porous materials</topic><topic>Saturation</topic><topic>Shear stress</topic><topic>Soil Science & Conservation</topic><topic>Viscosity</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchi Janetti, Emanuela</creatorcontrib><creatorcontrib>Riva, Monica</creatorcontrib><creatorcontrib>Guadagnini, Alberto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchi Janetti, Emanuela</au><au>Riva, Monica</au><au>Guadagnini, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical expressions for three-phase generalized relative permeabilities in water- and oil-wet capillary tubes</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>20</volume><issue>3</issue><spage>555</spage><epage>565</epage><pages>555-565</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>We analyze three-phase flow of immiscible fluids taking place within an elementary capillary tube with circular cross-section under water- and oil-wet conditions. We account explicitly for momentum transfer between the moving phases, which leads to the phenomenon of viscous coupling, by imposing continuity of velocity and shear stress at fluid-fluid interfaces. The macroscopic flow model which describes the system at the Darcy scale includes three-phase effective relative permeabilities,
K
i
j
,
r
, accounting for the flux of the
i
th phase due to the presence of the
j
th phase. These effective parameters strongly depend on phase saturations, fluid viscosities, and wettability of the solid matrix. In the considered flow setting,
K
i
j
,
r
reduce to a set of nine scalar quantities,
K
i
j
,
r
. Our results show that
K
i
j
,
r
of the wetting phase is a function only of the fluid phase own saturation. Otherwise,
K
i
j
,
r
of the non-wetting phase depends on the saturation of all fluids in the system and on oil and water viscosities. Viscous coupling effects (encapsulated in
K
i
j
,
r
with
i
≠
j
) can be significantly relevant in both water- and oil-wet systems. Wettability conditions influence oil flow at a rate that increases linearly with viscosity ratio between oil and water phases.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10596-015-9508-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-0597 |
ispartof | Computational geosciences, 2016-06, Vol.20 (3), p.555-565 |
issn | 1420-0597 1573-1499 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816032010 |
source | SpringerNature Journals |
subjects | Capillarity Computational fluid dynamics Earth and Environmental Science Earth Sciences Fluid flow Fluid mechanics Fluids Geotechnical Engineering & Applied Earth Sciences Hydrogeology Mathematical Modeling and Industrial Mathematics Mathematical models Momentum transfer Oil recovery Original Paper Permeability Phases Porous materials Saturation Shear stress Soil Science & Conservation Viscosity Wettability |
title | Analytical expressions for three-phase generalized relative permeabilities in water- and oil-wet capillary tubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20expressions%20for%20three-phase%20generalized%20relative%20permeabilities%20in%20water-%20and%20oil-wet%20capillary%20tubes&rft.jtitle=Computational%20geosciences&rft.au=Bianchi%20Janetti,%20Emanuela&rft.date=2016-06-01&rft.volume=20&rft.issue=3&rft.spage=555&rft.epage=565&rft.pages=555-565&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-015-9508-5&rft_dat=%3Cproquest_cross%3E1816032010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1788491344&rft_id=info:pmid/&rfr_iscdi=true |