Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques
Machine learning techniques are applied to make prediction models of the G sub(0)W sub(0) band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least square...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-03, Vol.93 (11), Article 115104 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physical review. B |
container_volume | 93 |
creator | Lee, Joohwi Seko, Atsuto Shitara, Kazuki Nakayama, Keita Tanaka, Isao |
description | Machine learning techniques are applied to make prediction models of the G sub(0)W sub(0) band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least squares regression (OLSR), least absolute shrinkage and selection operator, and nonlinear support vector regression (SVR) methods are applied with two levels of predictor sets. When the KS band gap by generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) or modified Becke-Johnson (mBJ) is used as a single predictor, the OLSR model predicts the G sub(0)W sub(0) band gap of randomly selected test data with the root-mean-square error (RMSE) of 0.59 eV. When KS band gap by PBE and mBJ methods are used together with a set of predictors representing constituent elements and compounds, the RMSE decreases significantly. The best model by SVR yields the RMSE of 0.24 eV. Band gaps estimated in this way should be useful as predictors for virtual screening of a large set of materials. |
doi_str_mv | 10.1103/PhysRevB.93.115104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816031333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816031333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-4a23008f921617066e8258b757cd1a3898d7576fa1c759d4e070452893d981433</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpC3DykUuKHefHPkIFFKkSFYKz5dhOY-TYwU6Q8hC8M0kLnHZ29c2sNABcY7TGGJHbfTPGV_11v2ZkOuQYZWdgkWYFSxgr2Pm_ztElWMX4gRDCBWIlYgvwvQ9aGdkb72DrlbbQ17ASTsGD6GDtAzTOh4NwRkLp284PTkVYjfNSGSeOxsmitIumH2E9uGOYsLBvtA8TKKwc7BGMcA5uhWyM09BqEZxxB9hr2TjzOeh4BS5qYaNe_c4leH98eNtsk93L0_PmbpdIwvI-yURKEKI1S3GBS1QUmqY5rcq8lAoLQhlVky5qgWWZM5VpVKIsTykjilGcEbIEN6fcLvj5b89bE6W2Vjjth8gxnQoimJAZTU-oDD7GoGveBdOKMHKM-Fw__6ufM8JP9ZMfskN8Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816031333</pqid></control><display><type>article</type><title>Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques</title><source>American Physical Society Journals</source><creator>Lee, Joohwi ; Seko, Atsuto ; Shitara, Kazuki ; Nakayama, Keita ; Tanaka, Isao</creator><creatorcontrib>Lee, Joohwi ; Seko, Atsuto ; Shitara, Kazuki ; Nakayama, Keita ; Tanaka, Isao</creatorcontrib><description>Machine learning techniques are applied to make prediction models of the G sub(0)W sub(0) band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least squares regression (OLSR), least absolute shrinkage and selection operator, and nonlinear support vector regression (SVR) methods are applied with two levels of predictor sets. When the KS band gap by generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) or modified Becke-Johnson (mBJ) is used as a single predictor, the OLSR model predicts the G sub(0)W sub(0) band gap of randomly selected test data with the root-mean-square error (RMSE) of 0.59 eV. When KS band gap by PBE and mBJ methods are used together with a set of predictors representing constituent elements and compounds, the RMSE decreases significantly. The best model by SVR yields the RMSE of 0.24 eV. Band gaps estimated in this way should be useful as predictors for virtual screening of a large set of materials.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.93.115104</identifier><language>eng</language><subject>Condensed matter ; Constituents ; Energy gaps (solid state) ; Inorganic compounds ; Machine learning ; Mathematical models ; Regression ; Shrinkage</subject><ispartof>Physical review. B, 2016-03, Vol.93 (11), Article 115104</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-4a23008f921617066e8258b757cd1a3898d7576fa1c759d4e070452893d981433</citedby><cites>FETCH-LOGICAL-c395t-4a23008f921617066e8258b757cd1a3898d7576fa1c759d4e070452893d981433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Joohwi</creatorcontrib><creatorcontrib>Seko, Atsuto</creatorcontrib><creatorcontrib>Shitara, Kazuki</creatorcontrib><creatorcontrib>Nakayama, Keita</creatorcontrib><creatorcontrib>Tanaka, Isao</creatorcontrib><title>Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques</title><title>Physical review. B</title><description>Machine learning techniques are applied to make prediction models of the G sub(0)W sub(0) band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least squares regression (OLSR), least absolute shrinkage and selection operator, and nonlinear support vector regression (SVR) methods are applied with two levels of predictor sets. When the KS band gap by generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) or modified Becke-Johnson (mBJ) is used as a single predictor, the OLSR model predicts the G sub(0)W sub(0) band gap of randomly selected test data with the root-mean-square error (RMSE) of 0.59 eV. When KS band gap by PBE and mBJ methods are used together with a set of predictors representing constituent elements and compounds, the RMSE decreases significantly. The best model by SVR yields the RMSE of 0.24 eV. Band gaps estimated in this way should be useful as predictors for virtual screening of a large set of materials.</description><subject>Condensed matter</subject><subject>Constituents</subject><subject>Energy gaps (solid state)</subject><subject>Inorganic compounds</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Regression</subject><subject>Shrinkage</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EElXpC3DykUuKHefHPkIFFKkSFYKz5dhOY-TYwU6Q8hC8M0kLnHZ29c2sNABcY7TGGJHbfTPGV_11v2ZkOuQYZWdgkWYFSxgr2Pm_ztElWMX4gRDCBWIlYgvwvQ9aGdkb72DrlbbQ17ASTsGD6GDtAzTOh4NwRkLp284PTkVYjfNSGSeOxsmitIumH2E9uGOYsLBvtA8TKKwc7BGMcA5uhWyM09BqEZxxB9hr2TjzOeh4BS5qYaNe_c4leH98eNtsk93L0_PmbpdIwvI-yURKEKI1S3GBS1QUmqY5rcq8lAoLQhlVky5qgWWZM5VpVKIsTykjilGcEbIEN6fcLvj5b89bE6W2Vjjth8gxnQoimJAZTU-oDD7GoGveBdOKMHKM-Fw__6ufM8JP9ZMfskN8Eg</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Lee, Joohwi</creator><creator>Seko, Atsuto</creator><creator>Shitara, Kazuki</creator><creator>Nakayama, Keita</creator><creator>Tanaka, Isao</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques</title><author>Lee, Joohwi ; Seko, Atsuto ; Shitara, Kazuki ; Nakayama, Keita ; Tanaka, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-4a23008f921617066e8258b757cd1a3898d7576fa1c759d4e070452893d981433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Condensed matter</topic><topic>Constituents</topic><topic>Energy gaps (solid state)</topic><topic>Inorganic compounds</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Regression</topic><topic>Shrinkage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joohwi</creatorcontrib><creatorcontrib>Seko, Atsuto</creatorcontrib><creatorcontrib>Shitara, Kazuki</creatorcontrib><creatorcontrib>Nakayama, Keita</creatorcontrib><creatorcontrib>Tanaka, Isao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Joohwi</au><au>Seko, Atsuto</au><au>Shitara, Kazuki</au><au>Nakayama, Keita</au><au>Tanaka, Isao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques</atitle><jtitle>Physical review. B</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>93</volume><issue>11</issue><artnum>115104</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Machine learning techniques are applied to make prediction models of the G sub(0)W sub(0) band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least squares regression (OLSR), least absolute shrinkage and selection operator, and nonlinear support vector regression (SVR) methods are applied with two levels of predictor sets. When the KS band gap by generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) or modified Becke-Johnson (mBJ) is used as a single predictor, the OLSR model predicts the G sub(0)W sub(0) band gap of randomly selected test data with the root-mean-square error (RMSE) of 0.59 eV. When KS band gap by PBE and mBJ methods are used together with a set of predictors representing constituent elements and compounds, the RMSE decreases significantly. The best model by SVR yields the RMSE of 0.24 eV. Band gaps estimated in this way should be useful as predictors for virtual screening of a large set of materials.</abstract><doi>10.1103/PhysRevB.93.115104</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2016-03, Vol.93 (11), Article 115104 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816031333 |
source | American Physical Society Journals |
subjects | Condensed matter Constituents Energy gaps (solid state) Inorganic compounds Machine learning Mathematical models Regression Shrinkage |
title | Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20model%20of%20band%20gap%20for%20inorganic%20compounds%20by%20combination%20of%20density%20functional%20theory%20calculations%20and%20machine%20learning%20techniques&rft.jtitle=Physical%20review.%20B&rft.au=Lee,%20Joohwi&rft.date=2016-03-01&rft.volume=93&rft.issue=11&rft.artnum=115104&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.115104&rft_dat=%3Cproquest_cross%3E1816031333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816031333&rft_id=info:pmid/&rfr_iscdi=true |