Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques

Machine learning techniques are applied to make prediction models of the G sub(0)W sub(0) band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least square...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-03, Vol.93 (11), Article 115104
Hauptverfasser: Lee, Joohwi, Seko, Atsuto, Shitara, Kazuki, Nakayama, Keita, Tanaka, Isao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physical review. B
container_volume 93
creator Lee, Joohwi
Seko, Atsuto
Shitara, Kazuki
Nakayama, Keita
Tanaka, Isao
description Machine learning techniques are applied to make prediction models of the G sub(0)W sub(0) band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least squares regression (OLSR), least absolute shrinkage and selection operator, and nonlinear support vector regression (SVR) methods are applied with two levels of predictor sets. When the KS band gap by generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) or modified Becke-Johnson (mBJ) is used as a single predictor, the OLSR model predicts the G sub(0)W sub(0) band gap of randomly selected test data with the root-mean-square error (RMSE) of 0.59 eV. When KS band gap by PBE and mBJ methods are used together with a set of predictors representing constituent elements and compounds, the RMSE decreases significantly. The best model by SVR yields the RMSE of 0.24 eV. Band gaps estimated in this way should be useful as predictors for virtual screening of a large set of materials.
doi_str_mv 10.1103/PhysRevB.93.115104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816031333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816031333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-4a23008f921617066e8258b757cd1a3898d7576fa1c759d4e070452893d981433</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpC3DykUuKHefHPkIFFKkSFYKz5dhOY-TYwU6Q8hC8M0kLnHZ29c2sNABcY7TGGJHbfTPGV_11v2ZkOuQYZWdgkWYFSxgr2Pm_ztElWMX4gRDCBWIlYgvwvQ9aGdkb72DrlbbQ17ASTsGD6GDtAzTOh4NwRkLp284PTkVYjfNSGSeOxsmitIumH2E9uGOYsLBvtA8TKKwc7BGMcA5uhWyM09BqEZxxB9hr2TjzOeh4BS5qYaNe_c4leH98eNtsk93L0_PmbpdIwvI-yURKEKI1S3GBS1QUmqY5rcq8lAoLQhlVky5qgWWZM5VpVKIsTykjilGcEbIEN6fcLvj5b89bE6W2Vjjth8gxnQoimJAZTU-oDD7GoGveBdOKMHKM-Fw__6ufM8JP9ZMfskN8Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816031333</pqid></control><display><type>article</type><title>Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques</title><source>American Physical Society Journals</source><creator>Lee, Joohwi ; Seko, Atsuto ; Shitara, Kazuki ; Nakayama, Keita ; Tanaka, Isao</creator><creatorcontrib>Lee, Joohwi ; Seko, Atsuto ; Shitara, Kazuki ; Nakayama, Keita ; Tanaka, Isao</creatorcontrib><description>Machine learning techniques are applied to make prediction models of the G sub(0)W sub(0) band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least squares regression (OLSR), least absolute shrinkage and selection operator, and nonlinear support vector regression (SVR) methods are applied with two levels of predictor sets. When the KS band gap by generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) or modified Becke-Johnson (mBJ) is used as a single predictor, the OLSR model predicts the G sub(0)W sub(0) band gap of randomly selected test data with the root-mean-square error (RMSE) of 0.59 eV. When KS band gap by PBE and mBJ methods are used together with a set of predictors representing constituent elements and compounds, the RMSE decreases significantly. The best model by SVR yields the RMSE of 0.24 eV. Band gaps estimated in this way should be useful as predictors for virtual screening of a large set of materials.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.93.115104</identifier><language>eng</language><subject>Condensed matter ; Constituents ; Energy gaps (solid state) ; Inorganic compounds ; Machine learning ; Mathematical models ; Regression ; Shrinkage</subject><ispartof>Physical review. B, 2016-03, Vol.93 (11), Article 115104</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-4a23008f921617066e8258b757cd1a3898d7576fa1c759d4e070452893d981433</citedby><cites>FETCH-LOGICAL-c395t-4a23008f921617066e8258b757cd1a3898d7576fa1c759d4e070452893d981433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Joohwi</creatorcontrib><creatorcontrib>Seko, Atsuto</creatorcontrib><creatorcontrib>Shitara, Kazuki</creatorcontrib><creatorcontrib>Nakayama, Keita</creatorcontrib><creatorcontrib>Tanaka, Isao</creatorcontrib><title>Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques</title><title>Physical review. B</title><description>Machine learning techniques are applied to make prediction models of the G sub(0)W sub(0) band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least squares regression (OLSR), least absolute shrinkage and selection operator, and nonlinear support vector regression (SVR) methods are applied with two levels of predictor sets. When the KS band gap by generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) or modified Becke-Johnson (mBJ) is used as a single predictor, the OLSR model predicts the G sub(0)W sub(0) band gap of randomly selected test data with the root-mean-square error (RMSE) of 0.59 eV. When KS band gap by PBE and mBJ methods are used together with a set of predictors representing constituent elements and compounds, the RMSE decreases significantly. The best model by SVR yields the RMSE of 0.24 eV. Band gaps estimated in this way should be useful as predictors for virtual screening of a large set of materials.</description><subject>Condensed matter</subject><subject>Constituents</subject><subject>Energy gaps (solid state)</subject><subject>Inorganic compounds</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Regression</subject><subject>Shrinkage</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EElXpC3DykUuKHefHPkIFFKkSFYKz5dhOY-TYwU6Q8hC8M0kLnHZ29c2sNABcY7TGGJHbfTPGV_11v2ZkOuQYZWdgkWYFSxgr2Pm_ztElWMX4gRDCBWIlYgvwvQ9aGdkb72DrlbbQ17ASTsGD6GDtAzTOh4NwRkLp284PTkVYjfNSGSeOxsmitIumH2E9uGOYsLBvtA8TKKwc7BGMcA5uhWyM09BqEZxxB9hr2TjzOeh4BS5qYaNe_c4leH98eNtsk93L0_PmbpdIwvI-yURKEKI1S3GBS1QUmqY5rcq8lAoLQhlVky5qgWWZM5VpVKIsTykjilGcEbIEN6fcLvj5b89bE6W2Vjjth8gxnQoimJAZTU-oDD7GoGveBdOKMHKM-Fw__6ufM8JP9ZMfskN8Eg</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Lee, Joohwi</creator><creator>Seko, Atsuto</creator><creator>Shitara, Kazuki</creator><creator>Nakayama, Keita</creator><creator>Tanaka, Isao</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques</title><author>Lee, Joohwi ; Seko, Atsuto ; Shitara, Kazuki ; Nakayama, Keita ; Tanaka, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-4a23008f921617066e8258b757cd1a3898d7576fa1c759d4e070452893d981433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Condensed matter</topic><topic>Constituents</topic><topic>Energy gaps (solid state)</topic><topic>Inorganic compounds</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Regression</topic><topic>Shrinkage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joohwi</creatorcontrib><creatorcontrib>Seko, Atsuto</creatorcontrib><creatorcontrib>Shitara, Kazuki</creatorcontrib><creatorcontrib>Nakayama, Keita</creatorcontrib><creatorcontrib>Tanaka, Isao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Joohwi</au><au>Seko, Atsuto</au><au>Shitara, Kazuki</au><au>Nakayama, Keita</au><au>Tanaka, Isao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques</atitle><jtitle>Physical review. B</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>93</volume><issue>11</issue><artnum>115104</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Machine learning techniques are applied to make prediction models of the G sub(0)W sub(0) band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least squares regression (OLSR), least absolute shrinkage and selection operator, and nonlinear support vector regression (SVR) methods are applied with two levels of predictor sets. When the KS band gap by generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) or modified Becke-Johnson (mBJ) is used as a single predictor, the OLSR model predicts the G sub(0)W sub(0) band gap of randomly selected test data with the root-mean-square error (RMSE) of 0.59 eV. When KS band gap by PBE and mBJ methods are used together with a set of predictors representing constituent elements and compounds, the RMSE decreases significantly. The best model by SVR yields the RMSE of 0.24 eV. Band gaps estimated in this way should be useful as predictors for virtual screening of a large set of materials.</abstract><doi>10.1103/PhysRevB.93.115104</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-03, Vol.93 (11), Article 115104
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_miscellaneous_1816031333
source American Physical Society Journals
subjects Condensed matter
Constituents
Energy gaps (solid state)
Inorganic compounds
Machine learning
Mathematical models
Regression
Shrinkage
title Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20model%20of%20band%20gap%20for%20inorganic%20compounds%20by%20combination%20of%20density%20functional%20theory%20calculations%20and%20machine%20learning%20techniques&rft.jtitle=Physical%20review.%20B&rft.au=Lee,%20Joohwi&rft.date=2016-03-01&rft.volume=93&rft.issue=11&rft.artnum=115104&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.115104&rft_dat=%3Cproquest_cross%3E1816031333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816031333&rft_id=info:pmid/&rfr_iscdi=true