Kernel methods for word sense disambiguation

Many applications of natural language processing (NLP) need an accurate resolution of various ambiguities existing in natural language. The task of fulfilling this need is also called word sense disambiguation (WSD). WSD is to resolve the correct sense for an instance of a polysemous word. On the ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review 2016-06, Vol.46 (1), p.41-58
Hauptverfasser: Li, Xiangjun, Qing, Song, Zhang, Huawei, Wang, Tinghua, Yang, Huping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 41
container_title The Artificial intelligence review
container_volume 46
creator Li, Xiangjun
Qing, Song
Zhang, Huawei
Wang, Tinghua
Yang, Huping
description Many applications of natural language processing (NLP) need an accurate resolution of various ambiguities existing in natural language. The task of fulfilling this need is also called word sense disambiguation (WSD). WSD is to resolve the correct sense for an instance of a polysemous word. On the other hand, as one of the most popular machine learning approaches, kernel methods have attracted significant interest in recent years and have exhibited fairly high performance in a wide variety of learning tasks. In this paper, we present a survey of the research progress of kernel-based WSD techniques. We start by introducing some preliminary knowledge concerning WSD and kernel methods. Then, a review of the main approaches in the literature is presented, focusing on the following issues: context representation, kernel design and learning algorithms. We also provide some further discussions on the kernel-based WSD approaches. Finally, open problems and future directions are discussed.
doi_str_mv 10.1007/s10462-015-9455-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816030527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718219461</galeid><sourcerecordid>A718219461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-59113f6c167d1ea72ea52957f14f85a61d36ac5830bc026602bcc2884751f0413</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcFNy7MmJc0H10Og1844EbXIZMmY4e2GZMW8d-boS5EkLcIPM593ByELoEsgBB5m4CUgmICHFcl55gfoRlwybDM62M0I1RUmCoKp-gspR0hhNOSzdDNs4u9a4vODe-hToUPsfgMsS6S65Mr6iaZbtNsRzM0oT9HJ960yV38vHP0dn_3unrE65eHp9VyjS1TasC8AmBeWBCyBmckdYbTiksPpVfcCKiZMJYrRjY29xKEbqylSpWSgyclsDm6nu7uY_gYXRp01yTr2tb0LoxJgwJBWP6BzOjVH3QXxtjndhqkkowoWopMLSZqa1qnm96HIRqbp3ZdY0PvfJP3SwlZUFWKQwOYAjaGlKLzeh-bzsQvDUQfhOtJuM7C9UG45jlDp0zKbL918VeVf0PfOPZ_sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787308246</pqid></control><display><type>article</type><title>Kernel methods for word sense disambiguation</title><source>SpringerLink (Online service)</source><creator>Li, Xiangjun ; Qing, Song ; Zhang, Huawei ; Wang, Tinghua ; Yang, Huping</creator><creatorcontrib>Li, Xiangjun ; Qing, Song ; Zhang, Huawei ; Wang, Tinghua ; Yang, Huping</creatorcontrib><description>Many applications of natural language processing (NLP) need an accurate resolution of various ambiguities existing in natural language. The task of fulfilling this need is also called word sense disambiguation (WSD). WSD is to resolve the correct sense for an instance of a polysemous word. On the other hand, as one of the most popular machine learning approaches, kernel methods have attracted significant interest in recent years and have exhibited fairly high performance in a wide variety of learning tasks. In this paper, we present a survey of the research progress of kernel-based WSD techniques. We start by introducing some preliminary knowledge concerning WSD and kernel methods. Then, a review of the main approaches in the literature is presented, focusing on the following issues: context representation, kernel design and learning algorithms. We also provide some further discussions on the kernel-based WSD approaches. Finally, open problems and future directions are discussed.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-015-9455-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Computational linguistics ; Computer engineering ; Computer Science ; Data mining ; Dictionaries ; Expert systems ; Information retrieval ; Kernels ; Knowledge ; Language processing ; Learning ; Machine learning ; Methods ; Natural language interfaces ; Natural language processing ; Principal components analysis ; Representations ; Semantics ; Support vector machines ; Tasks ; Word sense disambiguation</subject><ispartof>The Artificial intelligence review, 2016-06, Vol.46 (1), p.41-58</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-59113f6c167d1ea72ea52957f14f85a61d36ac5830bc026602bcc2884751f0413</citedby><cites>FETCH-LOGICAL-c388t-59113f6c167d1ea72ea52957f14f85a61d36ac5830bc026602bcc2884751f0413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-015-9455-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-015-9455-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Xiangjun</creatorcontrib><creatorcontrib>Qing, Song</creatorcontrib><creatorcontrib>Zhang, Huawei</creatorcontrib><creatorcontrib>Wang, Tinghua</creatorcontrib><creatorcontrib>Yang, Huping</creatorcontrib><title>Kernel methods for word sense disambiguation</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>Many applications of natural language processing (NLP) need an accurate resolution of various ambiguities existing in natural language. The task of fulfilling this need is also called word sense disambiguation (WSD). WSD is to resolve the correct sense for an instance of a polysemous word. On the other hand, as one of the most popular machine learning approaches, kernel methods have attracted significant interest in recent years and have exhibited fairly high performance in a wide variety of learning tasks. In this paper, we present a survey of the research progress of kernel-based WSD techniques. We start by introducing some preliminary knowledge concerning WSD and kernel methods. Then, a review of the main approaches in the literature is presented, focusing on the following issues: context representation, kernel design and learning algorithms. We also provide some further discussions on the kernel-based WSD approaches. Finally, open problems and future directions are discussed.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Computational linguistics</subject><subject>Computer engineering</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Dictionaries</subject><subject>Expert systems</subject><subject>Information retrieval</subject><subject>Kernels</subject><subject>Knowledge</subject><subject>Language processing</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Principal components analysis</subject><subject>Representations</subject><subject>Semantics</subject><subject>Support vector machines</subject><subject>Tasks</subject><subject>Word sense disambiguation</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHcFNy7MmJc0H10Og1844EbXIZMmY4e2GZMW8d-boS5EkLcIPM593ByELoEsgBB5m4CUgmICHFcl55gfoRlwybDM62M0I1RUmCoKp-gspR0hhNOSzdDNs4u9a4vODe-hToUPsfgMsS6S65Mr6iaZbtNsRzM0oT9HJ960yV38vHP0dn_3unrE65eHp9VyjS1TasC8AmBeWBCyBmckdYbTiksPpVfcCKiZMJYrRjY29xKEbqylSpWSgyclsDm6nu7uY_gYXRp01yTr2tb0LoxJgwJBWP6BzOjVH3QXxtjndhqkkowoWopMLSZqa1qnm96HIRqbp3ZdY0PvfJP3SwlZUFWKQwOYAjaGlKLzeh-bzsQvDUQfhOtJuM7C9UG45jlDp0zKbL918VeVf0PfOPZ_sg</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Li, Xiangjun</creator><creator>Qing, Song</creator><creator>Zhang, Huawei</creator><creator>Wang, Tinghua</creator><creator>Yang, Huping</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160601</creationdate><title>Kernel methods for word sense disambiguation</title><author>Li, Xiangjun ; Qing, Song ; Zhang, Huawei ; Wang, Tinghua ; Yang, Huping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-59113f6c167d1ea72ea52957f14f85a61d36ac5830bc026602bcc2884751f0413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Computational linguistics</topic><topic>Computer engineering</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Dictionaries</topic><topic>Expert systems</topic><topic>Information retrieval</topic><topic>Kernels</topic><topic>Knowledge</topic><topic>Language processing</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Principal components analysis</topic><topic>Representations</topic><topic>Semantics</topic><topic>Support vector machines</topic><topic>Tasks</topic><topic>Word sense disambiguation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiangjun</creatorcontrib><creatorcontrib>Qing, Song</creatorcontrib><creatorcontrib>Zhang, Huawei</creatorcontrib><creatorcontrib>Wang, Tinghua</creatorcontrib><creatorcontrib>Yang, Huping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiangjun</au><au>Qing, Song</au><au>Zhang, Huawei</au><au>Wang, Tinghua</au><au>Yang, Huping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel methods for word sense disambiguation</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>46</volume><issue>1</issue><spage>41</spage><epage>58</epage><pages>41-58</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Many applications of natural language processing (NLP) need an accurate resolution of various ambiguities existing in natural language. The task of fulfilling this need is also called word sense disambiguation (WSD). WSD is to resolve the correct sense for an instance of a polysemous word. On the other hand, as one of the most popular machine learning approaches, kernel methods have attracted significant interest in recent years and have exhibited fairly high performance in a wide variety of learning tasks. In this paper, we present a survey of the research progress of kernel-based WSD techniques. We start by introducing some preliminary knowledge concerning WSD and kernel methods. Then, a review of the main approaches in the literature is presented, focusing on the following issues: context representation, kernel design and learning algorithms. We also provide some further discussions on the kernel-based WSD approaches. Finally, open problems and future directions are discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-015-9455-5</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-2821
ispartof The Artificial intelligence review, 2016-06, Vol.46 (1), p.41-58
issn 0269-2821
1573-7462
language eng
recordid cdi_proquest_miscellaneous_1816030527
source SpringerLink (Online service)
subjects Algorithms
Analysis
Artificial Intelligence
Computational linguistics
Computer engineering
Computer Science
Data mining
Dictionaries
Expert systems
Information retrieval
Kernels
Knowledge
Language processing
Learning
Machine learning
Methods
Natural language interfaces
Natural language processing
Principal components analysis
Representations
Semantics
Support vector machines
Tasks
Word sense disambiguation
title Kernel methods for word sense disambiguation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20methods%20for%20word%20sense%20disambiguation&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Li,%20Xiangjun&rft.date=2016-06-01&rft.volume=46&rft.issue=1&rft.spage=41&rft.epage=58&rft.pages=41-58&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-015-9455-5&rft_dat=%3Cgale_proqu%3EA718219461%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787308246&rft_id=info:pmid/&rft_galeid=A718219461&rfr_iscdi=true