Kernel methods for word sense disambiguation
Many applications of natural language processing (NLP) need an accurate resolution of various ambiguities existing in natural language. The task of fulfilling this need is also called word sense disambiguation (WSD). WSD is to resolve the correct sense for an instance of a polysemous word. On the ot...
Gespeichert in:
Veröffentlicht in: | The Artificial intelligence review 2016-06, Vol.46 (1), p.41-58 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | The Artificial intelligence review |
container_volume | 46 |
creator | Li, Xiangjun Qing, Song Zhang, Huawei Wang, Tinghua Yang, Huping |
description | Many applications of natural language processing (NLP) need an accurate resolution of various ambiguities existing in natural language. The task of fulfilling this need is also called word sense disambiguation (WSD). WSD is to resolve the correct sense for an instance of a polysemous word. On the other hand, as one of the most popular machine learning approaches, kernel methods have attracted significant interest in recent years and have exhibited fairly high performance in a wide variety of learning tasks. In this paper, we present a survey of the research progress of kernel-based WSD techniques. We start by introducing some preliminary knowledge concerning WSD and kernel methods. Then, a review of the main approaches in the literature is presented, focusing on the following issues: context representation, kernel design and learning algorithms. We also provide some further discussions on the kernel-based WSD approaches. Finally, open problems and future directions are discussed. |
doi_str_mv | 10.1007/s10462-015-9455-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816030527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718219461</galeid><sourcerecordid>A718219461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-59113f6c167d1ea72ea52957f14f85a61d36ac5830bc026602bcc2884751f0413</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcFNy7MmJc0H10Og1844EbXIZMmY4e2GZMW8d-boS5EkLcIPM593ByELoEsgBB5m4CUgmICHFcl55gfoRlwybDM62M0I1RUmCoKp-gspR0hhNOSzdDNs4u9a4vODe-hToUPsfgMsS6S65Mr6iaZbtNsRzM0oT9HJ960yV38vHP0dn_3unrE65eHp9VyjS1TasC8AmBeWBCyBmckdYbTiksPpVfcCKiZMJYrRjY29xKEbqylSpWSgyclsDm6nu7uY_gYXRp01yTr2tb0LoxJgwJBWP6BzOjVH3QXxtjndhqkkowoWopMLSZqa1qnm96HIRqbp3ZdY0PvfJP3SwlZUFWKQwOYAjaGlKLzeh-bzsQvDUQfhOtJuM7C9UG45jlDp0zKbL918VeVf0PfOPZ_sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787308246</pqid></control><display><type>article</type><title>Kernel methods for word sense disambiguation</title><source>SpringerLink (Online service)</source><creator>Li, Xiangjun ; Qing, Song ; Zhang, Huawei ; Wang, Tinghua ; Yang, Huping</creator><creatorcontrib>Li, Xiangjun ; Qing, Song ; Zhang, Huawei ; Wang, Tinghua ; Yang, Huping</creatorcontrib><description>Many applications of natural language processing (NLP) need an accurate resolution of various ambiguities existing in natural language. The task of fulfilling this need is also called word sense disambiguation (WSD). WSD is to resolve the correct sense for an instance of a polysemous word. On the other hand, as one of the most popular machine learning approaches, kernel methods have attracted significant interest in recent years and have exhibited fairly high performance in a wide variety of learning tasks. In this paper, we present a survey of the research progress of kernel-based WSD techniques. We start by introducing some preliminary knowledge concerning WSD and kernel methods. Then, a review of the main approaches in the literature is presented, focusing on the following issues: context representation, kernel design and learning algorithms. We also provide some further discussions on the kernel-based WSD approaches. Finally, open problems and future directions are discussed.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-015-9455-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Computational linguistics ; Computer engineering ; Computer Science ; Data mining ; Dictionaries ; Expert systems ; Information retrieval ; Kernels ; Knowledge ; Language processing ; Learning ; Machine learning ; Methods ; Natural language interfaces ; Natural language processing ; Principal components analysis ; Representations ; Semantics ; Support vector machines ; Tasks ; Word sense disambiguation</subject><ispartof>The Artificial intelligence review, 2016-06, Vol.46 (1), p.41-58</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-59113f6c167d1ea72ea52957f14f85a61d36ac5830bc026602bcc2884751f0413</citedby><cites>FETCH-LOGICAL-c388t-59113f6c167d1ea72ea52957f14f85a61d36ac5830bc026602bcc2884751f0413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-015-9455-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-015-9455-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Xiangjun</creatorcontrib><creatorcontrib>Qing, Song</creatorcontrib><creatorcontrib>Zhang, Huawei</creatorcontrib><creatorcontrib>Wang, Tinghua</creatorcontrib><creatorcontrib>Yang, Huping</creatorcontrib><title>Kernel methods for word sense disambiguation</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>Many applications of natural language processing (NLP) need an accurate resolution of various ambiguities existing in natural language. The task of fulfilling this need is also called word sense disambiguation (WSD). WSD is to resolve the correct sense for an instance of a polysemous word. On the other hand, as one of the most popular machine learning approaches, kernel methods have attracted significant interest in recent years and have exhibited fairly high performance in a wide variety of learning tasks. In this paper, we present a survey of the research progress of kernel-based WSD techniques. We start by introducing some preliminary knowledge concerning WSD and kernel methods. Then, a review of the main approaches in the literature is presented, focusing on the following issues: context representation, kernel design and learning algorithms. We also provide some further discussions on the kernel-based WSD approaches. Finally, open problems and future directions are discussed.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Computational linguistics</subject><subject>Computer engineering</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Dictionaries</subject><subject>Expert systems</subject><subject>Information retrieval</subject><subject>Kernels</subject><subject>Knowledge</subject><subject>Language processing</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Principal components analysis</subject><subject>Representations</subject><subject>Semantics</subject><subject>Support vector machines</subject><subject>Tasks</subject><subject>Word sense disambiguation</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHcFNy7MmJc0H10Og1844EbXIZMmY4e2GZMW8d-boS5EkLcIPM593ByELoEsgBB5m4CUgmICHFcl55gfoRlwybDM62M0I1RUmCoKp-gspR0hhNOSzdDNs4u9a4vODe-hToUPsfgMsS6S65Mr6iaZbtNsRzM0oT9HJ960yV38vHP0dn_3unrE65eHp9VyjS1TasC8AmBeWBCyBmckdYbTiksPpVfcCKiZMJYrRjY29xKEbqylSpWSgyclsDm6nu7uY_gYXRp01yTr2tb0LoxJgwJBWP6BzOjVH3QXxtjndhqkkowoWopMLSZqa1qnm96HIRqbp3ZdY0PvfJP3SwlZUFWKQwOYAjaGlKLzeh-bzsQvDUQfhOtJuM7C9UG45jlDp0zKbL918VeVf0PfOPZ_sg</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Li, Xiangjun</creator><creator>Qing, Song</creator><creator>Zhang, Huawei</creator><creator>Wang, Tinghua</creator><creator>Yang, Huping</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160601</creationdate><title>Kernel methods for word sense disambiguation</title><author>Li, Xiangjun ; Qing, Song ; Zhang, Huawei ; Wang, Tinghua ; Yang, Huping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-59113f6c167d1ea72ea52957f14f85a61d36ac5830bc026602bcc2884751f0413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Computational linguistics</topic><topic>Computer engineering</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Dictionaries</topic><topic>Expert systems</topic><topic>Information retrieval</topic><topic>Kernels</topic><topic>Knowledge</topic><topic>Language processing</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Principal components analysis</topic><topic>Representations</topic><topic>Semantics</topic><topic>Support vector machines</topic><topic>Tasks</topic><topic>Word sense disambiguation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiangjun</creatorcontrib><creatorcontrib>Qing, Song</creatorcontrib><creatorcontrib>Zhang, Huawei</creatorcontrib><creatorcontrib>Wang, Tinghua</creatorcontrib><creatorcontrib>Yang, Huping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiangjun</au><au>Qing, Song</au><au>Zhang, Huawei</au><au>Wang, Tinghua</au><au>Yang, Huping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel methods for word sense disambiguation</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>46</volume><issue>1</issue><spage>41</spage><epage>58</epage><pages>41-58</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Many applications of natural language processing (NLP) need an accurate resolution of various ambiguities existing in natural language. The task of fulfilling this need is also called word sense disambiguation (WSD). WSD is to resolve the correct sense for an instance of a polysemous word. On the other hand, as one of the most popular machine learning approaches, kernel methods have attracted significant interest in recent years and have exhibited fairly high performance in a wide variety of learning tasks. In this paper, we present a survey of the research progress of kernel-based WSD techniques. We start by introducing some preliminary knowledge concerning WSD and kernel methods. Then, a review of the main approaches in the literature is presented, focusing on the following issues: context representation, kernel design and learning algorithms. We also provide some further discussions on the kernel-based WSD approaches. Finally, open problems and future directions are discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-015-9455-5</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-2821 |
ispartof | The Artificial intelligence review, 2016-06, Vol.46 (1), p.41-58 |
issn | 0269-2821 1573-7462 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816030527 |
source | SpringerLink (Online service) |
subjects | Algorithms Analysis Artificial Intelligence Computational linguistics Computer engineering Computer Science Data mining Dictionaries Expert systems Information retrieval Kernels Knowledge Language processing Learning Machine learning Methods Natural language interfaces Natural language processing Principal components analysis Representations Semantics Support vector machines Tasks Word sense disambiguation |
title | Kernel methods for word sense disambiguation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20methods%20for%20word%20sense%20disambiguation&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Li,%20Xiangjun&rft.date=2016-06-01&rft.volume=46&rft.issue=1&rft.spage=41&rft.epage=58&rft.pages=41-58&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-015-9455-5&rft_dat=%3Cgale_proqu%3EA718219461%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787308246&rft_id=info:pmid/&rft_galeid=A718219461&rfr_iscdi=true |