Modified Levenberg-Marquardt-Based Optimization Method for LiDAR Waveform Decomposition

A modified Levenberg-Marquardt (LM) method is proposed to improve the waveform-decomposition efficiency of light detection and ranging (LiDAR). The conventional constant-model-based LM fitting algorithm is subsequently modified using two proposed models: the linear model and exponential model. By re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2016-04, Vol.13 (4), p.530-534
Hauptverfasser: Xu, Fan, Li, Fenfang, Wang, Yuanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue 4
container_start_page 530
container_title IEEE geoscience and remote sensing letters
container_volume 13
creator Xu, Fan
Li, Fenfang
Wang, Yuanqing
description A modified Levenberg-Marquardt (LM) method is proposed to improve the waveform-decomposition efficiency of light detection and ranging (LiDAR). The conventional constant-model-based LM fitting algorithm is subsequently modified using two proposed models: the linear model and exponential model. By revising the update coefficient of the damping term to make it consistent with the variation of residual error, the magnitude of oscillation is effectively reduced to provide better convergence. The models were experimentally verified using observed data acquired by our experimental large-footprint LiDAR system. The results indicate that the two modified LM-based algorithms provide better performance in terms of convergence speed and iteration efficiency for waveform decomposition in comparison with the traditional algorithm. Most prominently, the exponential LM algorithm provides 69% maximum improvement in convergence speed and 103% in acceptable iteration efficiency in comparison with the traditional algorithm.
doi_str_mv 10.1109/LGRS.2016.2522387
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816025645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7416624</ieee_id><sourcerecordid>1816025645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-cd9fe0090dbc3dc20a4130bcb9ebf377ae99275250d32938abaa406406193d6e3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRsFZ_gHgJePGSuo_s61jfQorgA70tm-xEtzTdupsK-utNaPEgDMwM880wfAgdEzwhBOvz8vbxaUIxERPKKWVK7qAR4VzlmEuyO9QFz7lWb_voIKU5xrRQSo7Q6yw433hwWQlfsKwgvuczGz_XNrouv7CpnzysOt_6H9v5sMxm0H0ElzUhZqW_mj5mr_YL-q7NrqAO7SokP3CHaK-xiwRH2zxGLzfXz5d3eflwe385LfOaUdHltdMNYKyxq2rmaoptQRiu6kpD1TApLWhNJaccO0Y1U7aytsCiD6KZE8DG6GxzdxXD5xpSZ1qfalgs7BLCOhmiiMCUi4L36Ok_dB7Wcdl_Z4hUElMlenNjRDZUHUNKERqzir618dsQbAbVZlBtBtVmq7rfOdnseAD442VBhKAF-wXYD3oP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787028622</pqid></control><display><type>article</type><title>Modified Levenberg-Marquardt-Based Optimization Method for LiDAR Waveform Decomposition</title><source>IEEE Electronic Library Online</source><creator>Xu, Fan ; Li, Fenfang ; Wang, Yuanqing</creator><creatorcontrib>Xu, Fan ; Li, Fenfang ; Wang, Yuanqing</creatorcontrib><description>A modified Levenberg-Marquardt (LM) method is proposed to improve the waveform-decomposition efficiency of light detection and ranging (LiDAR). The conventional constant-model-based LM fitting algorithm is subsequently modified using two proposed models: the linear model and exponential model. By revising the update coefficient of the damping term to make it consistent with the variation of residual error, the magnitude of oscillation is effectively reduced to provide better convergence. The models were experimentally verified using observed data acquired by our experimental large-footprint LiDAR system. The results indicate that the two modified LM-based algorithms provide better performance in terms of convergence speed and iteration efficiency for waveform decomposition in comparison with the traditional algorithm. Most prominently, the exponential LM algorithm provides 69% maximum improvement in convergence speed and 103% in acceptable iteration efficiency in comparison with the traditional algorithm.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2016.2522387</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Convergence ; Damping ; Decomposition ; Distance measurement ; Efficiency ; Exponential model ; Iterative methods ; Laser radar ; Lidar ; Light detection and ranging ; light detection and ranging (LiDAR) ; linear model ; modified Levenberg-Marquardt (LM) ; Noise reduction ; Smoothing methods ; waveform decomposition ; Waveforms</subject><ispartof>IEEE geoscience and remote sensing letters, 2016-04, Vol.13 (4), p.530-534</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-cd9fe0090dbc3dc20a4130bcb9ebf377ae99275250d32938abaa406406193d6e3</citedby><cites>FETCH-LOGICAL-c326t-cd9fe0090dbc3dc20a4130bcb9ebf377ae99275250d32938abaa406406193d6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7416624$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7416624$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Fan</creatorcontrib><creatorcontrib>Li, Fenfang</creatorcontrib><creatorcontrib>Wang, Yuanqing</creatorcontrib><title>Modified Levenberg-Marquardt-Based Optimization Method for LiDAR Waveform Decomposition</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>A modified Levenberg-Marquardt (LM) method is proposed to improve the waveform-decomposition efficiency of light detection and ranging (LiDAR). The conventional constant-model-based LM fitting algorithm is subsequently modified using two proposed models: the linear model and exponential model. By revising the update coefficient of the damping term to make it consistent with the variation of residual error, the magnitude of oscillation is effectively reduced to provide better convergence. The models were experimentally verified using observed data acquired by our experimental large-footprint LiDAR system. The results indicate that the two modified LM-based algorithms provide better performance in terms of convergence speed and iteration efficiency for waveform decomposition in comparison with the traditional algorithm. Most prominently, the exponential LM algorithm provides 69% maximum improvement in convergence speed and 103% in acceptable iteration efficiency in comparison with the traditional algorithm.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Damping</subject><subject>Decomposition</subject><subject>Distance measurement</subject><subject>Efficiency</subject><subject>Exponential model</subject><subject>Iterative methods</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Light detection and ranging</subject><subject>light detection and ranging (LiDAR)</subject><subject>linear model</subject><subject>modified Levenberg-Marquardt (LM)</subject><subject>Noise reduction</subject><subject>Smoothing methods</subject><subject>waveform decomposition</subject><subject>Waveforms</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRsFZ_gHgJePGSuo_s61jfQorgA70tm-xEtzTdupsK-utNaPEgDMwM880wfAgdEzwhBOvz8vbxaUIxERPKKWVK7qAR4VzlmEuyO9QFz7lWb_voIKU5xrRQSo7Q6yw433hwWQlfsKwgvuczGz_XNrouv7CpnzysOt_6H9v5sMxm0H0ElzUhZqW_mj5mr_YL-q7NrqAO7SokP3CHaK-xiwRH2zxGLzfXz5d3eflwe385LfOaUdHltdMNYKyxq2rmaoptQRiu6kpD1TApLWhNJaccO0Y1U7aytsCiD6KZE8DG6GxzdxXD5xpSZ1qfalgs7BLCOhmiiMCUi4L36Ok_dB7Wcdl_Z4hUElMlenNjRDZUHUNKERqzir618dsQbAbVZlBtBtVmq7rfOdnseAD442VBhKAF-wXYD3oP</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Xu, Fan</creator><creator>Li, Fenfang</creator><creator>Wang, Yuanqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201604</creationdate><title>Modified Levenberg-Marquardt-Based Optimization Method for LiDAR Waveform Decomposition</title><author>Xu, Fan ; Li, Fenfang ; Wang, Yuanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-cd9fe0090dbc3dc20a4130bcb9ebf377ae99275250d32938abaa406406193d6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Damping</topic><topic>Decomposition</topic><topic>Distance measurement</topic><topic>Efficiency</topic><topic>Exponential model</topic><topic>Iterative methods</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Light detection and ranging</topic><topic>light detection and ranging (LiDAR)</topic><topic>linear model</topic><topic>modified Levenberg-Marquardt (LM)</topic><topic>Noise reduction</topic><topic>Smoothing methods</topic><topic>waveform decomposition</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Fan</creatorcontrib><creatorcontrib>Li, Fenfang</creatorcontrib><creatorcontrib>Wang, Yuanqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Fan</au><au>Li, Fenfang</au><au>Wang, Yuanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Levenberg-Marquardt-Based Optimization Method for LiDAR Waveform Decomposition</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2016-04</date><risdate>2016</risdate><volume>13</volume><issue>4</issue><spage>530</spage><epage>534</epage><pages>530-534</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>A modified Levenberg-Marquardt (LM) method is proposed to improve the waveform-decomposition efficiency of light detection and ranging (LiDAR). The conventional constant-model-based LM fitting algorithm is subsequently modified using two proposed models: the linear model and exponential model. By revising the update coefficient of the damping term to make it consistent with the variation of residual error, the magnitude of oscillation is effectively reduced to provide better convergence. The models were experimentally verified using observed data acquired by our experimental large-footprint LiDAR system. The results indicate that the two modified LM-based algorithms provide better performance in terms of convergence speed and iteration efficiency for waveform decomposition in comparison with the traditional algorithm. Most prominently, the exponential LM algorithm provides 69% maximum improvement in convergence speed and 103% in acceptable iteration efficiency in comparison with the traditional algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2016.2522387</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2016-04, Vol.13 (4), p.530-534
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_miscellaneous_1816025645
source IEEE Electronic Library Online
subjects Algorithms
Convergence
Damping
Decomposition
Distance measurement
Efficiency
Exponential model
Iterative methods
Laser radar
Lidar
Light detection and ranging
light detection and ranging (LiDAR)
linear model
modified Levenberg-Marquardt (LM)
Noise reduction
Smoothing methods
waveform decomposition
Waveforms
title Modified Levenberg-Marquardt-Based Optimization Method for LiDAR Waveform Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A47%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Levenberg-Marquardt-Based%20Optimization%20Method%20for%20LiDAR%20Waveform%20Decomposition&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Xu,%20Fan&rft.date=2016-04&rft.volume=13&rft.issue=4&rft.spage=530&rft.epage=534&rft.pages=530-534&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2016.2522387&rft_dat=%3Cproquest_RIE%3E1816025645%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787028622&rft_id=info:pmid/&rft_ieee_id=7416624&rfr_iscdi=true