Synthetic Modeling for an Acoustic Exploration System for Physical Oceanography
Marine multichannel seismic (MCS) data, used to obtain structural reflection images of the earth's subsurface, can also be used in physical oceanography exploration. This method provides vertical and lateral resolutions of O(10-100) m, covering the existing observational gap in oceanic explorat...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2016-01, Vol.33 (1), p.191-200 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | 1 |
container_start_page | 191 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 33 |
creator | Biescas, Berta Ruddick, Barry Kormann, Jean Sallares, Valenti Nedimovic, Mladen R |
description | Marine multichannel seismic (MCS) data, used to obtain structural reflection images of the earth's subsurface, can also be used in physical oceanography exploration. This method provides vertical and lateral resolutions of O(10-100) m, covering the existing observational gap in oceanic exploration. All MCS data used so far in physical oceanography studies have been acquired using conventional seismic instrumentation originally designed for geological exploration. This work presents the proof of concept of an alternative MCS system that is better adapted to physical oceanography and has two goals: 1) to have an environmentally low-impact acoustic source to minimize any potential disturbance to marine life and 2) to be light and portable, thus being installed on midsize oceanographic vessels. The synthetic experiments simulate the main variables of the source, shooting, and streamer involved in the MCS technique. The proposed system utilizes a 5-s-long exponential chirp source of 208 dB relative to 1 mu Pa at 1 m with a frequency content of 20-100 Hz and a relatively short 500-m-long streamer with 100 channels. This study exemplifies through numerical simulations that the 5-s-long chirp source can reduce the peak of the pressure signal by 26 dB with respect to equivalent air gun-based sources by spreading the energy in time, greatly reducing the impact to marine life. Additionally, the proposed system could be transported and installed in midsize oceanographic vessels, opening new horizons in acoustic oceanography research. |
doi_str_mv | 10.1175/JTECH-D-15-0137.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816025366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826249806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-1c7667ee7c96536f7e111237a9da43d232ec561c4f0773002b07e748a8c4afc03</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgUQp_AC2SCwsKXd2ck7GqpQvFRWpZbaM67Sp0rjYqUT-PWnLxADTDffo1Z1exq4RBogyvXuZj0dP8X2MaQwo5ABPWA9TDjEknE5ZD6TIY0glP2cXIawBOoXUY9NZWzcr25QmenULW5X1Miqcj3QdDY3bhf1i_LWtnNdN6epo1obGbg7kbdWG0ugqmhqra7f0ertqL9lZoatgr35mn70_jOfdaZPp4_NoOIlNgtDEaCSRtFaanFJBhbSIyIXU-UInYsEFtyYlNEkBUgoA_gHSyiTTmUl0YUD02e0xd-vd586GRm3KYGxV6dp2ZyvMkIB30fQ_lTnkRJxkR29-0bXb-bp7RPGME0_yDOgvhZJSEllCWafwqIx3IXhbqK0vN9q3CkHtO1OHztS9wlTtO1MovgG-E4e2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765638468</pqid></control><display><type>article</type><title>Synthetic Modeling for an Acoustic Exploration System for Physical Oceanography</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Biescas, Berta ; Ruddick, Barry ; Kormann, Jean ; Sallares, Valenti ; Nedimovic, Mladen R</creator><creatorcontrib>Biescas, Berta ; Ruddick, Barry ; Kormann, Jean ; Sallares, Valenti ; Nedimovic, Mladen R</creatorcontrib><description>Marine multichannel seismic (MCS) data, used to obtain structural reflection images of the earth's subsurface, can also be used in physical oceanography exploration. This method provides vertical and lateral resolutions of O(10-100) m, covering the existing observational gap in oceanic exploration. All MCS data used so far in physical oceanography studies have been acquired using conventional seismic instrumentation originally designed for geological exploration. This work presents the proof of concept of an alternative MCS system that is better adapted to physical oceanography and has two goals: 1) to have an environmentally low-impact acoustic source to minimize any potential disturbance to marine life and 2) to be light and portable, thus being installed on midsize oceanographic vessels. The synthetic experiments simulate the main variables of the source, shooting, and streamer involved in the MCS technique. The proposed system utilizes a 5-s-long exponential chirp source of 208 dB relative to 1 mu Pa at 1 m with a frequency content of 20-100 Hz and a relatively short 500-m-long streamer with 100 channels. This study exemplifies through numerical simulations that the 5-s-long chirp source can reduce the peak of the pressure signal by 26 dB with respect to equivalent air gun-based sources by spreading the energy in time, greatly reducing the impact to marine life. Additionally, the proposed system could be transported and installed in midsize oceanographic vessels, opening new horizons in acoustic oceanography research.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-15-0137.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Acoustics ; Air guns ; Atmospherics ; Channels ; Chirp ; Experiments ; Exploration ; Geological surveys ; Instrumentation ; Marine ; Mathematical models ; Numerical simulations ; Oceanographic research ; Oceanography ; Physical oceanography ; Salinity ; Simulation ; Sound sources ; Studies ; Underwater acoustics ; Underwater exploration ; Vessels</subject><ispartof>Journal of atmospheric and oceanic technology, 2016-01, Vol.33 (1), p.191-200</ispartof><rights>Copyright American Meteorological Society Jan 2016</rights><rights>Copyright American Meteorological Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-1c7667ee7c96536f7e111237a9da43d232ec561c4f0773002b07e748a8c4afc03</citedby><cites>FETCH-LOGICAL-c410t-1c7667ee7c96536f7e111237a9da43d232ec561c4f0773002b07e748a8c4afc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Biescas, Berta</creatorcontrib><creatorcontrib>Ruddick, Barry</creatorcontrib><creatorcontrib>Kormann, Jean</creatorcontrib><creatorcontrib>Sallares, Valenti</creatorcontrib><creatorcontrib>Nedimovic, Mladen R</creatorcontrib><title>Synthetic Modeling for an Acoustic Exploration System for Physical Oceanography</title><title>Journal of atmospheric and oceanic technology</title><description>Marine multichannel seismic (MCS) data, used to obtain structural reflection images of the earth's subsurface, can also be used in physical oceanography exploration. This method provides vertical and lateral resolutions of O(10-100) m, covering the existing observational gap in oceanic exploration. All MCS data used so far in physical oceanography studies have been acquired using conventional seismic instrumentation originally designed for geological exploration. This work presents the proof of concept of an alternative MCS system that is better adapted to physical oceanography and has two goals: 1) to have an environmentally low-impact acoustic source to minimize any potential disturbance to marine life and 2) to be light and portable, thus being installed on midsize oceanographic vessels. The synthetic experiments simulate the main variables of the source, shooting, and streamer involved in the MCS technique. The proposed system utilizes a 5-s-long exponential chirp source of 208 dB relative to 1 mu Pa at 1 m with a frequency content of 20-100 Hz and a relatively short 500-m-long streamer with 100 channels. This study exemplifies through numerical simulations that the 5-s-long chirp source can reduce the peak of the pressure signal by 26 dB with respect to equivalent air gun-based sources by spreading the energy in time, greatly reducing the impact to marine life. Additionally, the proposed system could be transported and installed in midsize oceanographic vessels, opening new horizons in acoustic oceanography research.</description><subject>Acoustics</subject><subject>Air guns</subject><subject>Atmospherics</subject><subject>Channels</subject><subject>Chirp</subject><subject>Experiments</subject><subject>Exploration</subject><subject>Geological surveys</subject><subject>Instrumentation</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Numerical simulations</subject><subject>Oceanographic research</subject><subject>Oceanography</subject><subject>Physical oceanography</subject><subject>Salinity</subject><subject>Simulation</subject><subject>Sound sources</subject><subject>Studies</subject><subject>Underwater acoustics</subject><subject>Underwater exploration</subject><subject>Vessels</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0T1PwzAQBmALgUQp_AC2SCwsKXd2ck7GqpQvFRWpZbaM67Sp0rjYqUT-PWnLxADTDffo1Z1exq4RBogyvXuZj0dP8X2MaQwo5ABPWA9TDjEknE5ZD6TIY0glP2cXIawBOoXUY9NZWzcr25QmenULW5X1Miqcj3QdDY3bhf1i_LWtnNdN6epo1obGbg7kbdWG0ugqmhqra7f0ertqL9lZoatgr35mn70_jOfdaZPp4_NoOIlNgtDEaCSRtFaanFJBhbSIyIXU-UInYsEFtyYlNEkBUgoA_gHSyiTTmUl0YUD02e0xd-vd586GRm3KYGxV6dp2ZyvMkIB30fQ_lTnkRJxkR29-0bXb-bp7RPGME0_yDOgvhZJSEllCWafwqIx3IXhbqK0vN9q3CkHtO1OHztS9wlTtO1MovgG-E4e2</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Biescas, Berta</creator><creator>Ruddick, Barry</creator><creator>Kormann, Jean</creator><creator>Sallares, Valenti</creator><creator>Nedimovic, Mladen R</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160101</creationdate><title>Synthetic Modeling for an Acoustic Exploration System for Physical Oceanography</title><author>Biescas, Berta ; Ruddick, Barry ; Kormann, Jean ; Sallares, Valenti ; Nedimovic, Mladen R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-1c7667ee7c96536f7e111237a9da43d232ec561c4f0773002b07e748a8c4afc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustics</topic><topic>Air guns</topic><topic>Atmospherics</topic><topic>Channels</topic><topic>Chirp</topic><topic>Experiments</topic><topic>Exploration</topic><topic>Geological surveys</topic><topic>Instrumentation</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Numerical simulations</topic><topic>Oceanographic research</topic><topic>Oceanography</topic><topic>Physical oceanography</topic><topic>Salinity</topic><topic>Simulation</topic><topic>Sound sources</topic><topic>Studies</topic><topic>Underwater acoustics</topic><topic>Underwater exploration</topic><topic>Vessels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biescas, Berta</creatorcontrib><creatorcontrib>Ruddick, Barry</creatorcontrib><creatorcontrib>Kormann, Jean</creatorcontrib><creatorcontrib>Sallares, Valenti</creatorcontrib><creatorcontrib>Nedimovic, Mladen R</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biescas, Berta</au><au>Ruddick, Barry</au><au>Kormann, Jean</au><au>Sallares, Valenti</au><au>Nedimovic, Mladen R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Modeling for an Acoustic Exploration System for Physical Oceanography</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>33</volume><issue>1</issue><spage>191</spage><epage>200</epage><pages>191-200</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Marine multichannel seismic (MCS) data, used to obtain structural reflection images of the earth's subsurface, can also be used in physical oceanography exploration. This method provides vertical and lateral resolutions of O(10-100) m, covering the existing observational gap in oceanic exploration. All MCS data used so far in physical oceanography studies have been acquired using conventional seismic instrumentation originally designed for geological exploration. This work presents the proof of concept of an alternative MCS system that is better adapted to physical oceanography and has two goals: 1) to have an environmentally low-impact acoustic source to minimize any potential disturbance to marine life and 2) to be light and portable, thus being installed on midsize oceanographic vessels. The synthetic experiments simulate the main variables of the source, shooting, and streamer involved in the MCS technique. The proposed system utilizes a 5-s-long exponential chirp source of 208 dB relative to 1 mu Pa at 1 m with a frequency content of 20-100 Hz and a relatively short 500-m-long streamer with 100 channels. This study exemplifies through numerical simulations that the 5-s-long chirp source can reduce the peak of the pressure signal by 26 dB with respect to equivalent air gun-based sources by spreading the energy in time, greatly reducing the impact to marine life. Additionally, the proposed system could be transported and installed in midsize oceanographic vessels, opening new horizons in acoustic oceanography research.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-15-0137.1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2016-01, Vol.33 (1), p.191-200 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816025366 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Acoustics Air guns Atmospherics Channels Chirp Experiments Exploration Geological surveys Instrumentation Marine Mathematical models Numerical simulations Oceanographic research Oceanography Physical oceanography Salinity Simulation Sound sources Studies Underwater acoustics Underwater exploration Vessels |
title | Synthetic Modeling for an Acoustic Exploration System for Physical Oceanography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Modeling%20for%20an%20Acoustic%20Exploration%20System%20for%20Physical%20Oceanography&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Biescas,%20Berta&rft.date=2016-01-01&rft.volume=33&rft.issue=1&rft.spage=191&rft.epage=200&rft.pages=191-200&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-15-0137.1&rft_dat=%3Cproquest_cross%3E2826249806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765638468&rft_id=info:pmid/&rfr_iscdi=true |