A numerical investigation of velocity–pressure reduced order models for incompressible flows
This report has two main goals. First, it numerically investigates three velocity–pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, where...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2014-02, Vol.259, p.598-616 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 616 |
---|---|
container_issue | |
container_start_page | 598 |
container_title | Journal of computational physics |
container_volume | 259 |
creator | Caiazzo, Alfonso Iliescu, Traian John, Volker Schyschlowa, Swetlana |
description | This report has two main goals. First, it numerically investigates three velocity–pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, whereas the other two ROMs use pressure modes as well. To the best of the authorsʼ knowledge, one of the latter methods is novel. The second goal is to numerically investigate the impact of the snapshot accuracy on the results of the ROMs. Numerical studies are performed on a two-dimensional laminar flow past a circular obstacle. Comparing the results of the ROMs and of the simulations for computing the snapshots, it turns out that the latter results are generally well reproduced by the ROMs. This observation is made for snapshots of different accuracy. Both in terms of reproducing the results of the underlying simulations for obtaining the snapshots and of efficiency, the two ROMs that utilize pressure modes are superior to the ROM that uses only velocity modes. |
doi_str_mv | 10.1016/j.jcp.2013.12.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816018602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999113008036</els_id><sourcerecordid>1531032645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2b966355e0417211a432ac86564a87a5dd09ab47ed5e29f48394279406d53f3</originalsourceid><addsrcrecordid>eNqFkM1u1DAURi1EJYbCA7Dzkk3Cvf5LLFZVBQWpEgtYY3nsm8qjJB7sZFB3vEPfkCdpyrCG1d2c80n3MPYGoUVA8-7QHsKxFYCyRdECqGdsh2ChER2a52wHILCx1uIL9rLWAwD0WvU79v2Kz-tEJQU_8jSfqC7pzi8pzzwP_ERjDmm5__3r4Vio1rUQLxTXQJHnEqnwKUcaKx9y2eyQpz9Y2o_EhzH_rK_YxeDHSq__3kv29eOHb9efmtsvN5-vr26bII1cGrG3xkitCRR2AtErKXzojTbK953XMYL1e9VR1CTsoHppleisAhO1HOQle3tePZb8Y91ecFOqgcbRz5TX6rBHA9gbEP9HtUSQwii9oXhGQ8m1FhrcsaTJl3uH4J6iu4Pborun6A6F26Jvzvuzs0WhU6Liakg0b71SobC4mNM_7EeK1Isc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531032645</pqid></control><display><type>article</type><title>A numerical investigation of velocity–pressure reduced order models for incompressible flows</title><source>Elsevier ScienceDirect Journals</source><creator>Caiazzo, Alfonso ; Iliescu, Traian ; John, Volker ; Schyschlowa, Swetlana</creator><creatorcontrib>Caiazzo, Alfonso ; Iliescu, Traian ; John, Volker ; Schyschlowa, Swetlana</creatorcontrib><description>This report has two main goals. First, it numerically investigates three velocity–pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, whereas the other two ROMs use pressure modes as well. To the best of the authorsʼ knowledge, one of the latter methods is novel. The second goal is to numerically investigate the impact of the snapshot accuracy on the results of the ROMs. Numerical studies are performed on a two-dimensional laminar flow past a circular obstacle. Comparing the results of the ROMs and of the simulations for computing the snapshots, it turns out that the latter results are generally well reproduced by the ROMs. This observation is made for snapshots of different accuracy. Both in terms of reproducing the results of the underlying simulations for obtaining the snapshots and of efficiency, the two ROMs that utilize pressure modes are superior to the ROM that uses only velocity modes.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2013.12.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Accuracy ; Computation ; Computational fluid dynamics ; Computer simulation ; Fluid flow ; Incompressible flow ; Mathematical models ; Navier–Stokes equations ; Proper orthogonal decomposition ; Reduced order models ; Snapshot accuracy ; Velocity–pressure reduced order models</subject><ispartof>Journal of computational physics, 2014-02, Vol.259, p.598-616</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2b966355e0417211a432ac86564a87a5dd09ab47ed5e29f48394279406d53f3</citedby><cites>FETCH-LOGICAL-c363t-2b966355e0417211a432ac86564a87a5dd09ab47ed5e29f48394279406d53f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999113008036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Caiazzo, Alfonso</creatorcontrib><creatorcontrib>Iliescu, Traian</creatorcontrib><creatorcontrib>John, Volker</creatorcontrib><creatorcontrib>Schyschlowa, Swetlana</creatorcontrib><title>A numerical investigation of velocity–pressure reduced order models for incompressible flows</title><title>Journal of computational physics</title><description>This report has two main goals. First, it numerically investigates three velocity–pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, whereas the other two ROMs use pressure modes as well. To the best of the authorsʼ knowledge, one of the latter methods is novel. The second goal is to numerically investigate the impact of the snapshot accuracy on the results of the ROMs. Numerical studies are performed on a two-dimensional laminar flow past a circular obstacle. Comparing the results of the ROMs and of the simulations for computing the snapshots, it turns out that the latter results are generally well reproduced by the ROMs. This observation is made for snapshots of different accuracy. Both in terms of reproducing the results of the underlying simulations for obtaining the snapshots and of efficiency, the two ROMs that utilize pressure modes are superior to the ROM that uses only velocity modes.</description><subject>Accuracy</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Mathematical models</subject><subject>Navier–Stokes equations</subject><subject>Proper orthogonal decomposition</subject><subject>Reduced order models</subject><subject>Snapshot accuracy</subject><subject>Velocity–pressure reduced order models</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u1DAURi1EJYbCA7Dzkk3Cvf5LLFZVBQWpEgtYY3nsm8qjJB7sZFB3vEPfkCdpyrCG1d2c80n3MPYGoUVA8-7QHsKxFYCyRdECqGdsh2ChER2a52wHILCx1uIL9rLWAwD0WvU79v2Kz-tEJQU_8jSfqC7pzi8pzzwP_ERjDmm5__3r4Vio1rUQLxTXQJHnEqnwKUcaKx9y2eyQpz9Y2o_EhzH_rK_YxeDHSq__3kv29eOHb9efmtsvN5-vr26bII1cGrG3xkitCRR2AtErKXzojTbK953XMYL1e9VR1CTsoHppleisAhO1HOQle3tePZb8Y91ecFOqgcbRz5TX6rBHA9gbEP9HtUSQwii9oXhGQ8m1FhrcsaTJl3uH4J6iu4Pborun6A6F26Jvzvuzs0WhU6Liakg0b71SobC4mNM_7EeK1Isc</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>Caiazzo, Alfonso</creator><creator>Iliescu, Traian</creator><creator>John, Volker</creator><creator>Schyschlowa, Swetlana</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140215</creationdate><title>A numerical investigation of velocity–pressure reduced order models for incompressible flows</title><author>Caiazzo, Alfonso ; Iliescu, Traian ; John, Volker ; Schyschlowa, Swetlana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2b966355e0417211a432ac86564a87a5dd09ab47ed5e29f48394279406d53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Mathematical models</topic><topic>Navier–Stokes equations</topic><topic>Proper orthogonal decomposition</topic><topic>Reduced order models</topic><topic>Snapshot accuracy</topic><topic>Velocity–pressure reduced order models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caiazzo, Alfonso</creatorcontrib><creatorcontrib>Iliescu, Traian</creatorcontrib><creatorcontrib>John, Volker</creatorcontrib><creatorcontrib>Schyschlowa, Swetlana</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caiazzo, Alfonso</au><au>Iliescu, Traian</au><au>John, Volker</au><au>Schyschlowa, Swetlana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical investigation of velocity–pressure reduced order models for incompressible flows</atitle><jtitle>Journal of computational physics</jtitle><date>2014-02-15</date><risdate>2014</risdate><volume>259</volume><spage>598</spage><epage>616</epage><pages>598-616</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>This report has two main goals. First, it numerically investigates three velocity–pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, whereas the other two ROMs use pressure modes as well. To the best of the authorsʼ knowledge, one of the latter methods is novel. The second goal is to numerically investigate the impact of the snapshot accuracy on the results of the ROMs. Numerical studies are performed on a two-dimensional laminar flow past a circular obstacle. Comparing the results of the ROMs and of the simulations for computing the snapshots, it turns out that the latter results are generally well reproduced by the ROMs. This observation is made for snapshots of different accuracy. Both in terms of reproducing the results of the underlying simulations for obtaining the snapshots and of efficiency, the two ROMs that utilize pressure modes are superior to the ROM that uses only velocity modes.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2013.12.004</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2014-02, Vol.259, p.598-616 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816018602 |
source | Elsevier ScienceDirect Journals |
subjects | Accuracy Computation Computational fluid dynamics Computer simulation Fluid flow Incompressible flow Mathematical models Navier–Stokes equations Proper orthogonal decomposition Reduced order models Snapshot accuracy Velocity–pressure reduced order models |
title | A numerical investigation of velocity–pressure reduced order models for incompressible flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20investigation%20of%20velocity%E2%80%93pressure%20reduced%20order%20models%20for%20incompressible%20flows&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Caiazzo,%20Alfonso&rft.date=2014-02-15&rft.volume=259&rft.spage=598&rft.epage=616&rft.pages=598-616&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2013.12.004&rft_dat=%3Cproquest_cross%3E1531032645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531032645&rft_id=info:pmid/&rft_els_id=S0021999113008036&rfr_iscdi=true |