A numerical investigation of velocity–pressure reduced order models for incompressible flows

This report has two main goals. First, it numerically investigates three velocity–pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2014-02, Vol.259, p.598-616
Hauptverfasser: Caiazzo, Alfonso, Iliescu, Traian, John, Volker, Schyschlowa, Swetlana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 616
container_issue
container_start_page 598
container_title Journal of computational physics
container_volume 259
creator Caiazzo, Alfonso
Iliescu, Traian
John, Volker
Schyschlowa, Swetlana
description This report has two main goals. First, it numerically investigates three velocity–pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, whereas the other two ROMs use pressure modes as well. To the best of the authorsʼ knowledge, one of the latter methods is novel. The second goal is to numerically investigate the impact of the snapshot accuracy on the results of the ROMs. Numerical studies are performed on a two-dimensional laminar flow past a circular obstacle. Comparing the results of the ROMs and of the simulations for computing the snapshots, it turns out that the latter results are generally well reproduced by the ROMs. This observation is made for snapshots of different accuracy. Both in terms of reproducing the results of the underlying simulations for obtaining the snapshots and of efficiency, the two ROMs that utilize pressure modes are superior to the ROM that uses only velocity modes.
doi_str_mv 10.1016/j.jcp.2013.12.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816018602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999113008036</els_id><sourcerecordid>1531032645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2b966355e0417211a432ac86564a87a5dd09ab47ed5e29f48394279406d53f3</originalsourceid><addsrcrecordid>eNqFkM1u1DAURi1EJYbCA7Dzkk3Cvf5LLFZVBQWpEgtYY3nsm8qjJB7sZFB3vEPfkCdpyrCG1d2c80n3MPYGoUVA8-7QHsKxFYCyRdECqGdsh2ChER2a52wHILCx1uIL9rLWAwD0WvU79v2Kz-tEJQU_8jSfqC7pzi8pzzwP_ERjDmm5__3r4Vio1rUQLxTXQJHnEqnwKUcaKx9y2eyQpz9Y2o_EhzH_rK_YxeDHSq__3kv29eOHb9efmtsvN5-vr26bII1cGrG3xkitCRR2AtErKXzojTbK953XMYL1e9VR1CTsoHppleisAhO1HOQle3tePZb8Y91ecFOqgcbRz5TX6rBHA9gbEP9HtUSQwii9oXhGQ8m1FhrcsaTJl3uH4J6iu4Pborun6A6F26Jvzvuzs0WhU6Liakg0b71SobC4mNM_7EeK1Isc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531032645</pqid></control><display><type>article</type><title>A numerical investigation of velocity–pressure reduced order models for incompressible flows</title><source>Elsevier ScienceDirect Journals</source><creator>Caiazzo, Alfonso ; Iliescu, Traian ; John, Volker ; Schyschlowa, Swetlana</creator><creatorcontrib>Caiazzo, Alfonso ; Iliescu, Traian ; John, Volker ; Schyschlowa, Swetlana</creatorcontrib><description>This report has two main goals. First, it numerically investigates three velocity–pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, whereas the other two ROMs use pressure modes as well. To the best of the authorsʼ knowledge, one of the latter methods is novel. The second goal is to numerically investigate the impact of the snapshot accuracy on the results of the ROMs. Numerical studies are performed on a two-dimensional laminar flow past a circular obstacle. Comparing the results of the ROMs and of the simulations for computing the snapshots, it turns out that the latter results are generally well reproduced by the ROMs. This observation is made for snapshots of different accuracy. Both in terms of reproducing the results of the underlying simulations for obtaining the snapshots and of efficiency, the two ROMs that utilize pressure modes are superior to the ROM that uses only velocity modes.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2013.12.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Accuracy ; Computation ; Computational fluid dynamics ; Computer simulation ; Fluid flow ; Incompressible flow ; Mathematical models ; Navier–Stokes equations ; Proper orthogonal decomposition ; Reduced order models ; Snapshot accuracy ; Velocity–pressure reduced order models</subject><ispartof>Journal of computational physics, 2014-02, Vol.259, p.598-616</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2b966355e0417211a432ac86564a87a5dd09ab47ed5e29f48394279406d53f3</citedby><cites>FETCH-LOGICAL-c363t-2b966355e0417211a432ac86564a87a5dd09ab47ed5e29f48394279406d53f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999113008036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Caiazzo, Alfonso</creatorcontrib><creatorcontrib>Iliescu, Traian</creatorcontrib><creatorcontrib>John, Volker</creatorcontrib><creatorcontrib>Schyschlowa, Swetlana</creatorcontrib><title>A numerical investigation of velocity–pressure reduced order models for incompressible flows</title><title>Journal of computational physics</title><description>This report has two main goals. First, it numerically investigates three velocity–pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, whereas the other two ROMs use pressure modes as well. To the best of the authorsʼ knowledge, one of the latter methods is novel. The second goal is to numerically investigate the impact of the snapshot accuracy on the results of the ROMs. Numerical studies are performed on a two-dimensional laminar flow past a circular obstacle. Comparing the results of the ROMs and of the simulations for computing the snapshots, it turns out that the latter results are generally well reproduced by the ROMs. This observation is made for snapshots of different accuracy. Both in terms of reproducing the results of the underlying simulations for obtaining the snapshots and of efficiency, the two ROMs that utilize pressure modes are superior to the ROM that uses only velocity modes.</description><subject>Accuracy</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Mathematical models</subject><subject>Navier–Stokes equations</subject><subject>Proper orthogonal decomposition</subject><subject>Reduced order models</subject><subject>Snapshot accuracy</subject><subject>Velocity–pressure reduced order models</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u1DAURi1EJYbCA7Dzkk3Cvf5LLFZVBQWpEgtYY3nsm8qjJB7sZFB3vEPfkCdpyrCG1d2c80n3MPYGoUVA8-7QHsKxFYCyRdECqGdsh2ChER2a52wHILCx1uIL9rLWAwD0WvU79v2Kz-tEJQU_8jSfqC7pzi8pzzwP_ERjDmm5__3r4Vio1rUQLxTXQJHnEqnwKUcaKx9y2eyQpz9Y2o_EhzH_rK_YxeDHSq__3kv29eOHb9efmtsvN5-vr26bII1cGrG3xkitCRR2AtErKXzojTbK953XMYL1e9VR1CTsoHppleisAhO1HOQle3tePZb8Y91ecFOqgcbRz5TX6rBHA9gbEP9HtUSQwii9oXhGQ8m1FhrcsaTJl3uH4J6iu4Pborun6A6F26Jvzvuzs0WhU6Liakg0b71SobC4mNM_7EeK1Isc</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>Caiazzo, Alfonso</creator><creator>Iliescu, Traian</creator><creator>John, Volker</creator><creator>Schyschlowa, Swetlana</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140215</creationdate><title>A numerical investigation of velocity–pressure reduced order models for incompressible flows</title><author>Caiazzo, Alfonso ; Iliescu, Traian ; John, Volker ; Schyschlowa, Swetlana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2b966355e0417211a432ac86564a87a5dd09ab47ed5e29f48394279406d53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Mathematical models</topic><topic>Navier–Stokes equations</topic><topic>Proper orthogonal decomposition</topic><topic>Reduced order models</topic><topic>Snapshot accuracy</topic><topic>Velocity–pressure reduced order models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caiazzo, Alfonso</creatorcontrib><creatorcontrib>Iliescu, Traian</creatorcontrib><creatorcontrib>John, Volker</creatorcontrib><creatorcontrib>Schyschlowa, Swetlana</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caiazzo, Alfonso</au><au>Iliescu, Traian</au><au>John, Volker</au><au>Schyschlowa, Swetlana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical investigation of velocity–pressure reduced order models for incompressible flows</atitle><jtitle>Journal of computational physics</jtitle><date>2014-02-15</date><risdate>2014</risdate><volume>259</volume><spage>598</spage><epage>616</epage><pages>598-616</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>This report has two main goals. First, it numerically investigates three velocity–pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, whereas the other two ROMs use pressure modes as well. To the best of the authorsʼ knowledge, one of the latter methods is novel. The second goal is to numerically investigate the impact of the snapshot accuracy on the results of the ROMs. Numerical studies are performed on a two-dimensional laminar flow past a circular obstacle. Comparing the results of the ROMs and of the simulations for computing the snapshots, it turns out that the latter results are generally well reproduced by the ROMs. This observation is made for snapshots of different accuracy. Both in terms of reproducing the results of the underlying simulations for obtaining the snapshots and of efficiency, the two ROMs that utilize pressure modes are superior to the ROM that uses only velocity modes.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2013.12.004</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2014-02, Vol.259, p.598-616
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1816018602
source Elsevier ScienceDirect Journals
subjects Accuracy
Computation
Computational fluid dynamics
Computer simulation
Fluid flow
Incompressible flow
Mathematical models
Navier–Stokes equations
Proper orthogonal decomposition
Reduced order models
Snapshot accuracy
Velocity–pressure reduced order models
title A numerical investigation of velocity–pressure reduced order models for incompressible flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20investigation%20of%20velocity%E2%80%93pressure%20reduced%20order%20models%20for%20incompressible%20flows&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Caiazzo,%20Alfonso&rft.date=2014-02-15&rft.volume=259&rft.spage=598&rft.epage=616&rft.pages=598-616&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2013.12.004&rft_dat=%3Cproquest_cross%3E1531032645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531032645&rft_id=info:pmid/&rft_els_id=S0021999113008036&rfr_iscdi=true