Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle

During induction of the autophagosomal degradation process, LC3-I is lipidated to LC3-II and associates to the cargo isolation membrane allowing for autophagosome formation. Lipidation of LC3 results in an increased LC3-II/LC3-I ratio, and this ratio is an often used marker for autophagy in various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular signalling 2016-06, Vol.28 (6), p.663-674
Hauptverfasser: Fritzen, Andreas Mæchel, Frøsig, Christian, Jeppesen, Jacob, Jensen, Thomas Elbenhardt, Lundsgaard, Anne-Marie, Serup, Annette Karen, Schjerling, Peter, Proud, Chris G., Richter, Erik A., Kiens, Bente
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 674
container_issue 6
container_start_page 663
container_title Cellular signalling
container_volume 28
creator Fritzen, Andreas Mæchel
Frøsig, Christian
Jeppesen, Jacob
Jensen, Thomas Elbenhardt
Lundsgaard, Anne-Marie
Serup, Annette Karen
Schjerling, Peter
Proud, Chris G.
Richter, Erik A.
Kiens, Bente
description During induction of the autophagosomal degradation process, LC3-I is lipidated to LC3-II and associates to the cargo isolation membrane allowing for autophagosome formation. Lipidation of LC3 results in an increased LC3-II/LC3-I ratio, and this ratio is an often used marker for autophagy in various tissues, including skeletal muscle. From cell studies AMPK has been proposed to be necessary and sufficient for LC3 lipidation. The aim of the present study was to investigate the role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. We observed an increase in the LC3-II/LC3-I ratio in skeletal muscle of AMPKα2 kinase-dead (KD) (p
doi_str_mv 10.1016/j.cellsig.2016.03.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816018433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898656816300596</els_id><sourcerecordid>1816018433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-4976b45be239b50f61e0366915561350727f904e8de4fe22200a80412c246a9b3</originalsourceid><addsrcrecordid>eNqFkMtu2zAQRYmiRe08PiGFlt1IGT5FrorASNIgDhIUDZAdQUkjhw5tuaRUwH9fCXazzYqY4bkcziHkgkJBgarLdVFjCMmvCjaWBfACQH4ic6pLnnND-WcyB210rqTSM3KS0hqASlDsK5kxZUrFwMzJy68uYNa12dXD033mt1nE1RBc77vt1F0ueBb8zjeHjkuZyzYuvmGcbt3Qd7tXt9pPwfSGAXsXss2Q6oBn5EvrQsLz43lKnm-ufy9-5svH27vF1TKvhRJ9LsaPVEJWyLipJLSKInClDJVSUS6hZGVrQKBuULTIGANwGgRlNRPKmYqfku-Hd3ex-zNg6u3Gp0mN22I3JEs1VUC14PxjtCyN1lyrCZUHtI5dShFbu4t-XHxvKdjJv13bo387-bfA7eh_zH07jhiqDTbvqf_CR-DHAcDRyV-P0aba47bGxkese9t0_oMR_wCwMpYh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779883863</pqid></control><display><type>article</type><title>Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fritzen, Andreas Mæchel ; Frøsig, Christian ; Jeppesen, Jacob ; Jensen, Thomas Elbenhardt ; Lundsgaard, Anne-Marie ; Serup, Annette Karen ; Schjerling, Peter ; Proud, Chris G. ; Richter, Erik A. ; Kiens, Bente</creator><creatorcontrib>Fritzen, Andreas Mæchel ; Frøsig, Christian ; Jeppesen, Jacob ; Jensen, Thomas Elbenhardt ; Lundsgaard, Anne-Marie ; Serup, Annette Karen ; Schjerling, Peter ; Proud, Chris G. ; Richter, Erik A. ; Kiens, Bente</creatorcontrib><description><![CDATA[During induction of the autophagosomal degradation process, LC3-I is lipidated to LC3-II and associates to the cargo isolation membrane allowing for autophagosome formation. Lipidation of LC3 results in an increased LC3-II/LC3-I ratio, and this ratio is an often used marker for autophagy in various tissues, including skeletal muscle. From cell studies AMPK has been proposed to be necessary and sufficient for LC3 lipidation. The aim of the present study was to investigate the role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. We observed an increase in the LC3-II/LC3-I ratio in skeletal muscle of AMPKα2 kinase-dead (KD) (p<0.001) and wild type (WT) (p<0.05) mice after 12h of fasting, which was greater (p<0.05) in AMPKα2 KD mice than in WT. The fasting-induced increase in the LC3-II/LC3-I ratio in both genotypes coincided with an initial decrease (p<0.01) in plasma insulin concentration, a subsequent decrease in muscle mTORC1 signaling and increased (p<0.05) levels of the autophagy-promoting proteins, FoxO3a and ULK1. Furthermore, a higher (p<0.01) LC3-II/LC3-I ratio was observed in old compared to young mice. We were not able to detect any change in LC3 lipidation with either in vivo treadmill exercise or in situ contractions. Collectively, these findings suggest that AMPKα2 is not necessary for induction of LC3 lipidation with fasting and aging. Furthermore, LC3 lipidation is increased in muscle lacking functional AMPKα2 during fasting and aging. Moreover, LC3 lipidation seems not to be a universal response to muscle contraction in mice. •AMPKα2 is not necessary for induction of LC3 lipidation and autophagosome formation with fasting and aging.•LC3 lipidation is increased in muscle lacking functional AMPKα2 during fasting and aging.•Fasting-induced LC3 lipidation coincides with an initial decrease in plasma insulin and in muscle mTORC1 signaling.•Fasting-induced LC3 lipidation is not dependent on eEF2k, but is accompanied by increased levels of FoxO3a and ULK1.•LC3 lipidation seems not to be a universal response to muscle contraction in mice.]]></description><identifier>ISSN: 0898-6568</identifier><identifier>EISSN: 1873-3913</identifier><identifier>DOI: 10.1016/j.cellsig.2016.03.005</identifier><identifier>PMID: 26976209</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Aging ; Aging (artificial) ; Aging - physiology ; AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; AMP-Activated Protein Kinases - physiology ; AMPK ; Animals ; Autophagy ; Biomarkers ; Control ; Exercise and eEF2K ; Fasting ; Female ; Formations ; Gene Knock-In Techniques ; LC3 lipidation ; Lipid Metabolism ; Markers ; Mice ; Mice, Inbred C57BL ; Microtubule-Associated Proteins - metabolism ; Muscle Contraction ; Muscle, Skeletal - enzymology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - physiology ; Muscles ; Peptide Elongation Factor 2 - genetics ; Physical Conditioning, Animal ; Proteins ; Signal Transduction</subject><ispartof>Cellular signalling, 2016-06, Vol.28 (6), p.663-674</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-4976b45be239b50f61e0366915561350727f904e8de4fe22200a80412c246a9b3</citedby><cites>FETCH-LOGICAL-c464t-4976b45be239b50f61e0366915561350727f904e8de4fe22200a80412c246a9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cellsig.2016.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26976209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fritzen, Andreas Mæchel</creatorcontrib><creatorcontrib>Frøsig, Christian</creatorcontrib><creatorcontrib>Jeppesen, Jacob</creatorcontrib><creatorcontrib>Jensen, Thomas Elbenhardt</creatorcontrib><creatorcontrib>Lundsgaard, Anne-Marie</creatorcontrib><creatorcontrib>Serup, Annette Karen</creatorcontrib><creatorcontrib>Schjerling, Peter</creatorcontrib><creatorcontrib>Proud, Chris G.</creatorcontrib><creatorcontrib>Richter, Erik A.</creatorcontrib><creatorcontrib>Kiens, Bente</creatorcontrib><title>Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle</title><title>Cellular signalling</title><addtitle>Cell Signal</addtitle><description><![CDATA[During induction of the autophagosomal degradation process, LC3-I is lipidated to LC3-II and associates to the cargo isolation membrane allowing for autophagosome formation. Lipidation of LC3 results in an increased LC3-II/LC3-I ratio, and this ratio is an often used marker for autophagy in various tissues, including skeletal muscle. From cell studies AMPK has been proposed to be necessary and sufficient for LC3 lipidation. The aim of the present study was to investigate the role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. We observed an increase in the LC3-II/LC3-I ratio in skeletal muscle of AMPKα2 kinase-dead (KD) (p<0.001) and wild type (WT) (p<0.05) mice after 12h of fasting, which was greater (p<0.05) in AMPKα2 KD mice than in WT. The fasting-induced increase in the LC3-II/LC3-I ratio in both genotypes coincided with an initial decrease (p<0.01) in plasma insulin concentration, a subsequent decrease in muscle mTORC1 signaling and increased (p<0.05) levels of the autophagy-promoting proteins, FoxO3a and ULK1. Furthermore, a higher (p<0.01) LC3-II/LC3-I ratio was observed in old compared to young mice. We were not able to detect any change in LC3 lipidation with either in vivo treadmill exercise or in situ contractions. Collectively, these findings suggest that AMPKα2 is not necessary for induction of LC3 lipidation with fasting and aging. Furthermore, LC3 lipidation is increased in muscle lacking functional AMPKα2 during fasting and aging. Moreover, LC3 lipidation seems not to be a universal response to muscle contraction in mice. •AMPKα2 is not necessary for induction of LC3 lipidation and autophagosome formation with fasting and aging.•LC3 lipidation is increased in muscle lacking functional AMPKα2 during fasting and aging.•Fasting-induced LC3 lipidation coincides with an initial decrease in plasma insulin and in muscle mTORC1 signaling.•Fasting-induced LC3 lipidation is not dependent on eEF2k, but is accompanied by increased levels of FoxO3a and ULK1.•LC3 lipidation seems not to be a universal response to muscle contraction in mice.]]></description><subject>Aging</subject><subject>Aging (artificial)</subject><subject>Aging - physiology</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>AMP-Activated Protein Kinases - physiology</subject><subject>AMPK</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Biomarkers</subject><subject>Control</subject><subject>Exercise and eEF2K</subject><subject>Fasting</subject><subject>Female</subject><subject>Formations</subject><subject>Gene Knock-In Techniques</subject><subject>LC3 lipidation</subject><subject>Lipid Metabolism</subject><subject>Markers</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Muscle Contraction</subject><subject>Muscle, Skeletal - enzymology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Peptide Elongation Factor 2 - genetics</subject><subject>Physical Conditioning, Animal</subject><subject>Proteins</subject><subject>Signal Transduction</subject><issn>0898-6568</issn><issn>1873-3913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtu2zAQRYmiRe08PiGFlt1IGT5FrorASNIgDhIUDZAdQUkjhw5tuaRUwH9fCXazzYqY4bkcziHkgkJBgarLdVFjCMmvCjaWBfACQH4ic6pLnnND-WcyB210rqTSM3KS0hqASlDsK5kxZUrFwMzJy68uYNa12dXD033mt1nE1RBc77vt1F0ueBb8zjeHjkuZyzYuvmGcbt3Qd7tXt9pPwfSGAXsXss2Q6oBn5EvrQsLz43lKnm-ufy9-5svH27vF1TKvhRJ9LsaPVEJWyLipJLSKInClDJVSUS6hZGVrQKBuULTIGANwGgRlNRPKmYqfku-Hd3ex-zNg6u3Gp0mN22I3JEs1VUC14PxjtCyN1lyrCZUHtI5dShFbu4t-XHxvKdjJv13bo387-bfA7eh_zH07jhiqDTbvqf_CR-DHAcDRyV-P0aba47bGxkese9t0_oMR_wCwMpYh</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Fritzen, Andreas Mæchel</creator><creator>Frøsig, Christian</creator><creator>Jeppesen, Jacob</creator><creator>Jensen, Thomas Elbenhardt</creator><creator>Lundsgaard, Anne-Marie</creator><creator>Serup, Annette Karen</creator><creator>Schjerling, Peter</creator><creator>Proud, Chris G.</creator><creator>Richter, Erik A.</creator><creator>Kiens, Bente</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201606</creationdate><title>Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle</title><author>Fritzen, Andreas Mæchel ; Frøsig, Christian ; Jeppesen, Jacob ; Jensen, Thomas Elbenhardt ; Lundsgaard, Anne-Marie ; Serup, Annette Karen ; Schjerling, Peter ; Proud, Chris G. ; Richter, Erik A. ; Kiens, Bente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-4976b45be239b50f61e0366915561350727f904e8de4fe22200a80412c246a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aging</topic><topic>Aging (artificial)</topic><topic>Aging - physiology</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>AMP-Activated Protein Kinases - physiology</topic><topic>AMPK</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Biomarkers</topic><topic>Control</topic><topic>Exercise and eEF2K</topic><topic>Fasting</topic><topic>Female</topic><topic>Formations</topic><topic>Gene Knock-In Techniques</topic><topic>LC3 lipidation</topic><topic>Lipid Metabolism</topic><topic>Markers</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Muscle Contraction</topic><topic>Muscle, Skeletal - enzymology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Peptide Elongation Factor 2 - genetics</topic><topic>Physical Conditioning, Animal</topic><topic>Proteins</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fritzen, Andreas Mæchel</creatorcontrib><creatorcontrib>Frøsig, Christian</creatorcontrib><creatorcontrib>Jeppesen, Jacob</creatorcontrib><creatorcontrib>Jensen, Thomas Elbenhardt</creatorcontrib><creatorcontrib>Lundsgaard, Anne-Marie</creatorcontrib><creatorcontrib>Serup, Annette Karen</creatorcontrib><creatorcontrib>Schjerling, Peter</creatorcontrib><creatorcontrib>Proud, Chris G.</creatorcontrib><creatorcontrib>Richter, Erik A.</creatorcontrib><creatorcontrib>Kiens, Bente</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cellular signalling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fritzen, Andreas Mæchel</au><au>Frøsig, Christian</au><au>Jeppesen, Jacob</au><au>Jensen, Thomas Elbenhardt</au><au>Lundsgaard, Anne-Marie</au><au>Serup, Annette Karen</au><au>Schjerling, Peter</au><au>Proud, Chris G.</au><au>Richter, Erik A.</au><au>Kiens, Bente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle</atitle><jtitle>Cellular signalling</jtitle><addtitle>Cell Signal</addtitle><date>2016-06</date><risdate>2016</risdate><volume>28</volume><issue>6</issue><spage>663</spage><epage>674</epage><pages>663-674</pages><issn>0898-6568</issn><eissn>1873-3913</eissn><abstract><![CDATA[During induction of the autophagosomal degradation process, LC3-I is lipidated to LC3-II and associates to the cargo isolation membrane allowing for autophagosome formation. Lipidation of LC3 results in an increased LC3-II/LC3-I ratio, and this ratio is an often used marker for autophagy in various tissues, including skeletal muscle. From cell studies AMPK has been proposed to be necessary and sufficient for LC3 lipidation. The aim of the present study was to investigate the role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. We observed an increase in the LC3-II/LC3-I ratio in skeletal muscle of AMPKα2 kinase-dead (KD) (p<0.001) and wild type (WT) (p<0.05) mice after 12h of fasting, which was greater (p<0.05) in AMPKα2 KD mice than in WT. The fasting-induced increase in the LC3-II/LC3-I ratio in both genotypes coincided with an initial decrease (p<0.01) in plasma insulin concentration, a subsequent decrease in muscle mTORC1 signaling and increased (p<0.05) levels of the autophagy-promoting proteins, FoxO3a and ULK1. Furthermore, a higher (p<0.01) LC3-II/LC3-I ratio was observed in old compared to young mice. We were not able to detect any change in LC3 lipidation with either in vivo treadmill exercise or in situ contractions. Collectively, these findings suggest that AMPKα2 is not necessary for induction of LC3 lipidation with fasting and aging. Furthermore, LC3 lipidation is increased in muscle lacking functional AMPKα2 during fasting and aging. Moreover, LC3 lipidation seems not to be a universal response to muscle contraction in mice. •AMPKα2 is not necessary for induction of LC3 lipidation and autophagosome formation with fasting and aging.•LC3 lipidation is increased in muscle lacking functional AMPKα2 during fasting and aging.•Fasting-induced LC3 lipidation coincides with an initial decrease in plasma insulin and in muscle mTORC1 signaling.•Fasting-induced LC3 lipidation is not dependent on eEF2k, but is accompanied by increased levels of FoxO3a and ULK1.•LC3 lipidation seems not to be a universal response to muscle contraction in mice.]]></abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>26976209</pmid><doi>10.1016/j.cellsig.2016.03.005</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0898-6568
ispartof Cellular signalling, 2016-06, Vol.28 (6), p.663-674
issn 0898-6568
1873-3913
language eng
recordid cdi_proquest_miscellaneous_1816018433
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Aging
Aging (artificial)
Aging - physiology
AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
AMP-Activated Protein Kinases - physiology
AMPK
Animals
Autophagy
Biomarkers
Control
Exercise and eEF2K
Fasting
Female
Formations
Gene Knock-In Techniques
LC3 lipidation
Lipid Metabolism
Markers
Mice
Mice, Inbred C57BL
Microtubule-Associated Proteins - metabolism
Muscle Contraction
Muscle, Skeletal - enzymology
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiology
Muscles
Peptide Elongation Factor 2 - genetics
Physical Conditioning, Animal
Proteins
Signal Transduction
title Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20AMPK%20in%20regulation%20of%20LC3%20lipidation%20as%20a%20marker%20of%20autophagy%20in%20skeletal%20muscle&rft.jtitle=Cellular%20signalling&rft.au=Fritzen,%20Andreas%20M%C3%A6chel&rft.date=2016-06&rft.volume=28&rft.issue=6&rft.spage=663&rft.epage=674&rft.pages=663-674&rft.issn=0898-6568&rft.eissn=1873-3913&rft_id=info:doi/10.1016/j.cellsig.2016.03.005&rft_dat=%3Cproquest_cross%3E1816018433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779883863&rft_id=info:pmid/26976209&rft_els_id=S0898656816300596&rfr_iscdi=true