Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery
•Low concentration stable CuO–water nanofluid prepared without surfactant.•10% increase in thermal conductivity at 0.05wt% nanoparticle concentration.•Heat absorption from constant source temperature in U-shaped minitube tested.•Maximum enhancement in ‘h’ at optimum nanoparticle concentration.•34% e...
Gespeichert in:
Veröffentlicht in: | Energy conversion and management 2016-06, Vol.118, p.415-425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 425 |
---|---|
container_issue | |
container_start_page | 415 |
container_title | Energy conversion and management |
container_volume | 118 |
creator | Leela Vinodhan, V. Suganthi, K.S. Rajan, K.S. |
description | •Low concentration stable CuO–water nanofluid prepared without surfactant.•10% increase in thermal conductivity at 0.05wt% nanoparticle concentration.•Heat absorption from constant source temperature in U-shaped minitube tested.•Maximum enhancement in ‘h’ at optimum nanoparticle concentration.•34% enhancement in ‘h’ at low flow rates.
Heat removal from a constant temperature heat source is relevant in energy recovery from thermal energy storage systems and catalytic reactors. Experiments were carried out to assess the heat transfer performance of CuO–water nanofluid flowing through a U-shaped minitube (0.9mm inner diameter) for heat removal from a constant temperature source, with nanoparticle concentration (0.025–0.1wt%) and volumetric flow rate (0.18–1.25mL/s) as the independent variables. The thermal conductivity and viscosity of CuO–water nanofluids increased linearly with nanoparticle concentration, with thermal conductivity enhancement higher than that of viscosity increase. The heat transfer rate, heat transfer coefficient and Nusselt number of CuO–water nanofluids were higher than that of water. The improved heat transfer performance of CuO–water nanofluids may be attributed to their improved thermal conductivity and particle migration effects. Our experiments reveal that the heat transfer performance of CuO–water nanofluids in U-shaped minitube is enhanced to a larger extent at the lower flow rates and at an optimum nanoparticle concentration of 0.05wt%. We believe that the existence of an optimum nanoparticle concentration may be attributed to the enhanced synergistic effect of higher thermal conductivity and particle migration. |
doi_str_mv | 10.1016/j.enconman.2016.04.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816018116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890416302588</els_id><sourcerecordid>1790948383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-89bf78c20970f318fe15563ad1e2e28967585d52519306a6d4547c09cca6f8283</originalsourceid><addsrcrecordid>eNqFkc9uFDEMxiMEEkvpK1Q5cpmpMzPJJJxAK_5JlcqBnqM049CsZpIlySxaceEdeEOepKm2Pfdiy_LPn2x_hFwwaBkwcblrMdgYFhPartYtDC2w8QXZMDmqpuu68SXZAFOikQqG1-RNzjsA6DmIDfmzjeGAtvgD0js0hZZkQnaY6B6Ti6mqWqTR0e16_f_vv9-m1FYwIbp59VOmPtCbJt-ZPU508cGX9Rbf0--xYCjezLRKUL_sUzxUAAOmn0ea0NYyHd-SV87MGc8f8xm5-fzpx_Zrc3X95dv241VjB8ZL3frWjdJ2oEZwPZMOGeeiNxPDDjupxMgln3jHmepBGDENfBgtKGuNcLKT_Rl5d9Kta_xaMRe9-Gxxnk3AuGbNJBNQAxPPo6MCNche9hUVJ9SmmHNCp_fJLyYdNQP9YIze6Sdj9IMxGgZdjamDH06DWG8-eEw6W19JnHz9TNFT9M9J3ANFHpxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790948383</pqid></control><display><type>article</type><title>Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Leela Vinodhan, V. ; Suganthi, K.S. ; Rajan, K.S.</creator><creatorcontrib>Leela Vinodhan, V. ; Suganthi, K.S. ; Rajan, K.S.</creatorcontrib><description>•Low concentration stable CuO–water nanofluid prepared without surfactant.•10% increase in thermal conductivity at 0.05wt% nanoparticle concentration.•Heat absorption from constant source temperature in U-shaped minitube tested.•Maximum enhancement in ‘h’ at optimum nanoparticle concentration.•34% enhancement in ‘h’ at low flow rates.
Heat removal from a constant temperature heat source is relevant in energy recovery from thermal energy storage systems and catalytic reactors. Experiments were carried out to assess the heat transfer performance of CuO–water nanofluid flowing through a U-shaped minitube (0.9mm inner diameter) for heat removal from a constant temperature source, with nanoparticle concentration (0.025–0.1wt%) and volumetric flow rate (0.18–1.25mL/s) as the independent variables. The thermal conductivity and viscosity of CuO–water nanofluids increased linearly with nanoparticle concentration, with thermal conductivity enhancement higher than that of viscosity increase. The heat transfer rate, heat transfer coefficient and Nusselt number of CuO–water nanofluids were higher than that of water. The improved heat transfer performance of CuO–water nanofluids may be attributed to their improved thermal conductivity and particle migration effects. Our experiments reveal that the heat transfer performance of CuO–water nanofluids in U-shaped minitube is enhanced to a larger extent at the lower flow rates and at an optimum nanoparticle concentration of 0.05wt%. We believe that the existence of an optimum nanoparticle concentration may be attributed to the enhanced synergistic effect of higher thermal conductivity and particle migration.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2016.04.017</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Constant temperature ; Constants ; CONVECTION ; COPPER OXIDE ; CuO–water nanofluid ; ELECTRICAL CONDUCTIVITY ; Energy recovery ; Enhancement ; Flow rate ; FLUID FLOW ; Heat transfer ; Heat transfer coefficient ; MICROSTRUCTURES ; Minitube ; Nanofluids ; Nanostructure ; Nusselt number ; Thermal conductivity ; VISCOSITY ; WATER</subject><ispartof>Energy conversion and management, 2016-06, Vol.118, p.415-425</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-89bf78c20970f318fe15563ad1e2e28967585d52519306a6d4547c09cca6f8283</citedby><cites>FETCH-LOGICAL-c415t-89bf78c20970f318fe15563ad1e2e28967585d52519306a6d4547c09cca6f8283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2016.04.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Leela Vinodhan, V.</creatorcontrib><creatorcontrib>Suganthi, K.S.</creatorcontrib><creatorcontrib>Rajan, K.S.</creatorcontrib><title>Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery</title><title>Energy conversion and management</title><description>•Low concentration stable CuO–water nanofluid prepared without surfactant.•10% increase in thermal conductivity at 0.05wt% nanoparticle concentration.•Heat absorption from constant source temperature in U-shaped minitube tested.•Maximum enhancement in ‘h’ at optimum nanoparticle concentration.•34% enhancement in ‘h’ at low flow rates.
Heat removal from a constant temperature heat source is relevant in energy recovery from thermal energy storage systems and catalytic reactors. Experiments were carried out to assess the heat transfer performance of CuO–water nanofluid flowing through a U-shaped minitube (0.9mm inner diameter) for heat removal from a constant temperature source, with nanoparticle concentration (0.025–0.1wt%) and volumetric flow rate (0.18–1.25mL/s) as the independent variables. The thermal conductivity and viscosity of CuO–water nanofluids increased linearly with nanoparticle concentration, with thermal conductivity enhancement higher than that of viscosity increase. The heat transfer rate, heat transfer coefficient and Nusselt number of CuO–water nanofluids were higher than that of water. The improved heat transfer performance of CuO–water nanofluids may be attributed to their improved thermal conductivity and particle migration effects. Our experiments reveal that the heat transfer performance of CuO–water nanofluids in U-shaped minitube is enhanced to a larger extent at the lower flow rates and at an optimum nanoparticle concentration of 0.05wt%. We believe that the existence of an optimum nanoparticle concentration may be attributed to the enhanced synergistic effect of higher thermal conductivity and particle migration.</description><subject>Constant temperature</subject><subject>Constants</subject><subject>CONVECTION</subject><subject>COPPER OXIDE</subject><subject>CuO–water nanofluid</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Energy recovery</subject><subject>Enhancement</subject><subject>Flow rate</subject><subject>FLUID FLOW</subject><subject>Heat transfer</subject><subject>Heat transfer coefficient</subject><subject>MICROSTRUCTURES</subject><subject>Minitube</subject><subject>Nanofluids</subject><subject>Nanostructure</subject><subject>Nusselt number</subject><subject>Thermal conductivity</subject><subject>VISCOSITY</subject><subject>WATER</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc9uFDEMxiMEEkvpK1Q5cpmpMzPJJJxAK_5JlcqBnqM049CsZpIlySxaceEdeEOepKm2Pfdiy_LPn2x_hFwwaBkwcblrMdgYFhPartYtDC2w8QXZMDmqpuu68SXZAFOikQqG1-RNzjsA6DmIDfmzjeGAtvgD0js0hZZkQnaY6B6Ti6mqWqTR0e16_f_vv9-m1FYwIbp59VOmPtCbJt-ZPU508cGX9Rbf0--xYCjezLRKUL_sUzxUAAOmn0ea0NYyHd-SV87MGc8f8xm5-fzpx_Zrc3X95dv241VjB8ZL3frWjdJ2oEZwPZMOGeeiNxPDDjupxMgln3jHmepBGDENfBgtKGuNcLKT_Rl5d9Kta_xaMRe9-Gxxnk3AuGbNJBNQAxPPo6MCNche9hUVJ9SmmHNCp_fJLyYdNQP9YIze6Sdj9IMxGgZdjamDH06DWG8-eEw6W19JnHz9TNFT9M9J3ANFHpxs</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Leela Vinodhan, V.</creator><creator>Suganthi, K.S.</creator><creator>Rajan, K.S.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160615</creationdate><title>Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery</title><author>Leela Vinodhan, V. ; Suganthi, K.S. ; Rajan, K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-89bf78c20970f318fe15563ad1e2e28967585d52519306a6d4547c09cca6f8283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Constant temperature</topic><topic>Constants</topic><topic>CONVECTION</topic><topic>COPPER OXIDE</topic><topic>CuO–water nanofluid</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Energy recovery</topic><topic>Enhancement</topic><topic>Flow rate</topic><topic>FLUID FLOW</topic><topic>Heat transfer</topic><topic>Heat transfer coefficient</topic><topic>MICROSTRUCTURES</topic><topic>Minitube</topic><topic>Nanofluids</topic><topic>Nanostructure</topic><topic>Nusselt number</topic><topic>Thermal conductivity</topic><topic>VISCOSITY</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leela Vinodhan, V.</creatorcontrib><creatorcontrib>Suganthi, K.S.</creatorcontrib><creatorcontrib>Rajan, K.S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leela Vinodhan, V.</au><au>Suganthi, K.S.</au><au>Rajan, K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery</atitle><jtitle>Energy conversion and management</jtitle><date>2016-06-15</date><risdate>2016</risdate><volume>118</volume><spage>415</spage><epage>425</epage><pages>415-425</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•Low concentration stable CuO–water nanofluid prepared without surfactant.•10% increase in thermal conductivity at 0.05wt% nanoparticle concentration.•Heat absorption from constant source temperature in U-shaped minitube tested.•Maximum enhancement in ‘h’ at optimum nanoparticle concentration.•34% enhancement in ‘h’ at low flow rates.
Heat removal from a constant temperature heat source is relevant in energy recovery from thermal energy storage systems and catalytic reactors. Experiments were carried out to assess the heat transfer performance of CuO–water nanofluid flowing through a U-shaped minitube (0.9mm inner diameter) for heat removal from a constant temperature source, with nanoparticle concentration (0.025–0.1wt%) and volumetric flow rate (0.18–1.25mL/s) as the independent variables. The thermal conductivity and viscosity of CuO–water nanofluids increased linearly with nanoparticle concentration, with thermal conductivity enhancement higher than that of viscosity increase. The heat transfer rate, heat transfer coefficient and Nusselt number of CuO–water nanofluids were higher than that of water. The improved heat transfer performance of CuO–water nanofluids may be attributed to their improved thermal conductivity and particle migration effects. Our experiments reveal that the heat transfer performance of CuO–water nanofluids in U-shaped minitube is enhanced to a larger extent at the lower flow rates and at an optimum nanoparticle concentration of 0.05wt%. We believe that the existence of an optimum nanoparticle concentration may be attributed to the enhanced synergistic effect of higher thermal conductivity and particle migration.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2016.04.017</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2016-06, Vol.118, p.415-425 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816018116 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Constant temperature Constants CONVECTION COPPER OXIDE CuO–water nanofluid ELECTRICAL CONDUCTIVITY Energy recovery Enhancement Flow rate FLUID FLOW Heat transfer Heat transfer coefficient MICROSTRUCTURES Minitube Nanofluids Nanostructure Nusselt number Thermal conductivity VISCOSITY WATER |
title | Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convective%20heat%20transfer%20performance%20of%20CuO%E2%80%93water%20nanofluids%20in%20U-shaped%20minitube:%20Potential%20for%20improved%20energy%20recovery&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Leela%20Vinodhan,%20V.&rft.date=2016-06-15&rft.volume=118&rft.spage=415&rft.epage=425&rft.pages=415-425&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2016.04.017&rft_dat=%3Cproquest_cross%3E1790948383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790948383&rft_id=info:pmid/&rft_els_id=S0196890416302588&rfr_iscdi=true |