Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery

•Low concentration stable CuO–water nanofluid prepared without surfactant.•10% increase in thermal conductivity at 0.05wt% nanoparticle concentration.•Heat absorption from constant source temperature in U-shaped minitube tested.•Maximum enhancement in ‘h’ at optimum nanoparticle concentration.•34% e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2016-06, Vol.118, p.415-425
Hauptverfasser: Leela Vinodhan, V., Suganthi, K.S., Rajan, K.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 425
container_issue
container_start_page 415
container_title Energy conversion and management
container_volume 118
creator Leela Vinodhan, V.
Suganthi, K.S.
Rajan, K.S.
description •Low concentration stable CuO–water nanofluid prepared without surfactant.•10% increase in thermal conductivity at 0.05wt% nanoparticle concentration.•Heat absorption from constant source temperature in U-shaped minitube tested.•Maximum enhancement in ‘h’ at optimum nanoparticle concentration.•34% enhancement in ‘h’ at low flow rates. Heat removal from a constant temperature heat source is relevant in energy recovery from thermal energy storage systems and catalytic reactors. Experiments were carried out to assess the heat transfer performance of CuO–water nanofluid flowing through a U-shaped minitube (0.9mm inner diameter) for heat removal from a constant temperature source, with nanoparticle concentration (0.025–0.1wt%) and volumetric flow rate (0.18–1.25mL/s) as the independent variables. The thermal conductivity and viscosity of CuO–water nanofluids increased linearly with nanoparticle concentration, with thermal conductivity enhancement higher than that of viscosity increase. The heat transfer rate, heat transfer coefficient and Nusselt number of CuO–water nanofluids were higher than that of water. The improved heat transfer performance of CuO–water nanofluids may be attributed to their improved thermal conductivity and particle migration effects. Our experiments reveal that the heat transfer performance of CuO–water nanofluids in U-shaped minitube is enhanced to a larger extent at the lower flow rates and at an optimum nanoparticle concentration of 0.05wt%. We believe that the existence of an optimum nanoparticle concentration may be attributed to the enhanced synergistic effect of higher thermal conductivity and particle migration.
doi_str_mv 10.1016/j.enconman.2016.04.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816018116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890416302588</els_id><sourcerecordid>1790948383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-89bf78c20970f318fe15563ad1e2e28967585d52519306a6d4547c09cca6f8283</originalsourceid><addsrcrecordid>eNqFkc9uFDEMxiMEEkvpK1Q5cpmpMzPJJJxAK_5JlcqBnqM049CsZpIlySxaceEdeEOepKm2Pfdiy_LPn2x_hFwwaBkwcblrMdgYFhPartYtDC2w8QXZMDmqpuu68SXZAFOikQqG1-RNzjsA6DmIDfmzjeGAtvgD0js0hZZkQnaY6B6Ti6mqWqTR0e16_f_vv9-m1FYwIbp59VOmPtCbJt-ZPU508cGX9Rbf0--xYCjezLRKUL_sUzxUAAOmn0ea0NYyHd-SV87MGc8f8xm5-fzpx_Zrc3X95dv241VjB8ZL3frWjdJ2oEZwPZMOGeeiNxPDDjupxMgln3jHmepBGDENfBgtKGuNcLKT_Rl5d9Kta_xaMRe9-Gxxnk3AuGbNJBNQAxPPo6MCNche9hUVJ9SmmHNCp_fJLyYdNQP9YIze6Sdj9IMxGgZdjamDH06DWG8-eEw6W19JnHz9TNFT9M9J3ANFHpxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790948383</pqid></control><display><type>article</type><title>Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Leela Vinodhan, V. ; Suganthi, K.S. ; Rajan, K.S.</creator><creatorcontrib>Leela Vinodhan, V. ; Suganthi, K.S. ; Rajan, K.S.</creatorcontrib><description>•Low concentration stable CuO–water nanofluid prepared without surfactant.•10% increase in thermal conductivity at 0.05wt% nanoparticle concentration.•Heat absorption from constant source temperature in U-shaped minitube tested.•Maximum enhancement in ‘h’ at optimum nanoparticle concentration.•34% enhancement in ‘h’ at low flow rates. Heat removal from a constant temperature heat source is relevant in energy recovery from thermal energy storage systems and catalytic reactors. Experiments were carried out to assess the heat transfer performance of CuO–water nanofluid flowing through a U-shaped minitube (0.9mm inner diameter) for heat removal from a constant temperature source, with nanoparticle concentration (0.025–0.1wt%) and volumetric flow rate (0.18–1.25mL/s) as the independent variables. The thermal conductivity and viscosity of CuO–water nanofluids increased linearly with nanoparticle concentration, with thermal conductivity enhancement higher than that of viscosity increase. The heat transfer rate, heat transfer coefficient and Nusselt number of CuO–water nanofluids were higher than that of water. The improved heat transfer performance of CuO–water nanofluids may be attributed to their improved thermal conductivity and particle migration effects. Our experiments reveal that the heat transfer performance of CuO–water nanofluids in U-shaped minitube is enhanced to a larger extent at the lower flow rates and at an optimum nanoparticle concentration of 0.05wt%. We believe that the existence of an optimum nanoparticle concentration may be attributed to the enhanced synergistic effect of higher thermal conductivity and particle migration.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2016.04.017</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Constant temperature ; Constants ; CONVECTION ; COPPER OXIDE ; CuO–water nanofluid ; ELECTRICAL CONDUCTIVITY ; Energy recovery ; Enhancement ; Flow rate ; FLUID FLOW ; Heat transfer ; Heat transfer coefficient ; MICROSTRUCTURES ; Minitube ; Nanofluids ; Nanostructure ; Nusselt number ; Thermal conductivity ; VISCOSITY ; WATER</subject><ispartof>Energy conversion and management, 2016-06, Vol.118, p.415-425</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-89bf78c20970f318fe15563ad1e2e28967585d52519306a6d4547c09cca6f8283</citedby><cites>FETCH-LOGICAL-c415t-89bf78c20970f318fe15563ad1e2e28967585d52519306a6d4547c09cca6f8283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2016.04.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Leela Vinodhan, V.</creatorcontrib><creatorcontrib>Suganthi, K.S.</creatorcontrib><creatorcontrib>Rajan, K.S.</creatorcontrib><title>Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery</title><title>Energy conversion and management</title><description>•Low concentration stable CuO–water nanofluid prepared without surfactant.•10% increase in thermal conductivity at 0.05wt% nanoparticle concentration.•Heat absorption from constant source temperature in U-shaped minitube tested.•Maximum enhancement in ‘h’ at optimum nanoparticle concentration.•34% enhancement in ‘h’ at low flow rates. Heat removal from a constant temperature heat source is relevant in energy recovery from thermal energy storage systems and catalytic reactors. Experiments were carried out to assess the heat transfer performance of CuO–water nanofluid flowing through a U-shaped minitube (0.9mm inner diameter) for heat removal from a constant temperature source, with nanoparticle concentration (0.025–0.1wt%) and volumetric flow rate (0.18–1.25mL/s) as the independent variables. The thermal conductivity and viscosity of CuO–water nanofluids increased linearly with nanoparticle concentration, with thermal conductivity enhancement higher than that of viscosity increase. The heat transfer rate, heat transfer coefficient and Nusselt number of CuO–water nanofluids were higher than that of water. The improved heat transfer performance of CuO–water nanofluids may be attributed to their improved thermal conductivity and particle migration effects. Our experiments reveal that the heat transfer performance of CuO–water nanofluids in U-shaped minitube is enhanced to a larger extent at the lower flow rates and at an optimum nanoparticle concentration of 0.05wt%. We believe that the existence of an optimum nanoparticle concentration may be attributed to the enhanced synergistic effect of higher thermal conductivity and particle migration.</description><subject>Constant temperature</subject><subject>Constants</subject><subject>CONVECTION</subject><subject>COPPER OXIDE</subject><subject>CuO–water nanofluid</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Energy recovery</subject><subject>Enhancement</subject><subject>Flow rate</subject><subject>FLUID FLOW</subject><subject>Heat transfer</subject><subject>Heat transfer coefficient</subject><subject>MICROSTRUCTURES</subject><subject>Minitube</subject><subject>Nanofluids</subject><subject>Nanostructure</subject><subject>Nusselt number</subject><subject>Thermal conductivity</subject><subject>VISCOSITY</subject><subject>WATER</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc9uFDEMxiMEEkvpK1Q5cpmpMzPJJJxAK_5JlcqBnqM049CsZpIlySxaceEdeEOepKm2Pfdiy_LPn2x_hFwwaBkwcblrMdgYFhPartYtDC2w8QXZMDmqpuu68SXZAFOikQqG1-RNzjsA6DmIDfmzjeGAtvgD0js0hZZkQnaY6B6Ti6mqWqTR0e16_f_vv9-m1FYwIbp59VOmPtCbJt-ZPU508cGX9Rbf0--xYCjezLRKUL_sUzxUAAOmn0ea0NYyHd-SV87MGc8f8xm5-fzpx_Zrc3X95dv241VjB8ZL3frWjdJ2oEZwPZMOGeeiNxPDDjupxMgln3jHmepBGDENfBgtKGuNcLKT_Rl5d9Kta_xaMRe9-Gxxnk3AuGbNJBNQAxPPo6MCNche9hUVJ9SmmHNCp_fJLyYdNQP9YIze6Sdj9IMxGgZdjamDH06DWG8-eEw6W19JnHz9TNFT9M9J3ANFHpxs</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Leela Vinodhan, V.</creator><creator>Suganthi, K.S.</creator><creator>Rajan, K.S.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160615</creationdate><title>Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery</title><author>Leela Vinodhan, V. ; Suganthi, K.S. ; Rajan, K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-89bf78c20970f318fe15563ad1e2e28967585d52519306a6d4547c09cca6f8283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Constant temperature</topic><topic>Constants</topic><topic>CONVECTION</topic><topic>COPPER OXIDE</topic><topic>CuO–water nanofluid</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Energy recovery</topic><topic>Enhancement</topic><topic>Flow rate</topic><topic>FLUID FLOW</topic><topic>Heat transfer</topic><topic>Heat transfer coefficient</topic><topic>MICROSTRUCTURES</topic><topic>Minitube</topic><topic>Nanofluids</topic><topic>Nanostructure</topic><topic>Nusselt number</topic><topic>Thermal conductivity</topic><topic>VISCOSITY</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leela Vinodhan, V.</creatorcontrib><creatorcontrib>Suganthi, K.S.</creatorcontrib><creatorcontrib>Rajan, K.S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leela Vinodhan, V.</au><au>Suganthi, K.S.</au><au>Rajan, K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery</atitle><jtitle>Energy conversion and management</jtitle><date>2016-06-15</date><risdate>2016</risdate><volume>118</volume><spage>415</spage><epage>425</epage><pages>415-425</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•Low concentration stable CuO–water nanofluid prepared without surfactant.•10% increase in thermal conductivity at 0.05wt% nanoparticle concentration.•Heat absorption from constant source temperature in U-shaped minitube tested.•Maximum enhancement in ‘h’ at optimum nanoparticle concentration.•34% enhancement in ‘h’ at low flow rates. Heat removal from a constant temperature heat source is relevant in energy recovery from thermal energy storage systems and catalytic reactors. Experiments were carried out to assess the heat transfer performance of CuO–water nanofluid flowing through a U-shaped minitube (0.9mm inner diameter) for heat removal from a constant temperature source, with nanoparticle concentration (0.025–0.1wt%) and volumetric flow rate (0.18–1.25mL/s) as the independent variables. The thermal conductivity and viscosity of CuO–water nanofluids increased linearly with nanoparticle concentration, with thermal conductivity enhancement higher than that of viscosity increase. The heat transfer rate, heat transfer coefficient and Nusselt number of CuO–water nanofluids were higher than that of water. The improved heat transfer performance of CuO–water nanofluids may be attributed to their improved thermal conductivity and particle migration effects. Our experiments reveal that the heat transfer performance of CuO–water nanofluids in U-shaped minitube is enhanced to a larger extent at the lower flow rates and at an optimum nanoparticle concentration of 0.05wt%. We believe that the existence of an optimum nanoparticle concentration may be attributed to the enhanced synergistic effect of higher thermal conductivity and particle migration.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2016.04.017</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2016-06, Vol.118, p.415-425
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_miscellaneous_1816018116
source Elsevier ScienceDirect Journals Complete
subjects Constant temperature
Constants
CONVECTION
COPPER OXIDE
CuO–water nanofluid
ELECTRICAL CONDUCTIVITY
Energy recovery
Enhancement
Flow rate
FLUID FLOW
Heat transfer
Heat transfer coefficient
MICROSTRUCTURES
Minitube
Nanofluids
Nanostructure
Nusselt number
Thermal conductivity
VISCOSITY
WATER
title Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convective%20heat%20transfer%20performance%20of%20CuO%E2%80%93water%20nanofluids%20in%20U-shaped%20minitube:%20Potential%20for%20improved%20energy%20recovery&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Leela%20Vinodhan,%20V.&rft.date=2016-06-15&rft.volume=118&rft.spage=415&rft.epage=425&rft.pages=415-425&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2016.04.017&rft_dat=%3Cproquest_cross%3E1790948383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790948383&rft_id=info:pmid/&rft_els_id=S0196890416302588&rfr_iscdi=true