Silica-Polymer Hybrid with Self-Assembled PEG Corona Excreted Rapidly via a Hepatobiliary Route

Nanotechnology‐based diagnostics and therapeutics usually suffer from long‐term retention of nanosized devices in the major organs, which may cause unwanted side effects. Herein, we describe the development of ultra‐small silica‐polymer hybrid dots (Sdots) through the self‐assembly between a polyeth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2016-05, Vol.26 (18), p.3036-3047
Hauptverfasser: Zhao, Lingzhi, Yuan, Wei, Ang, Chung Yen, Qu, Qiuyu, Dai, Yu, Gao, Yilin, Luo, Zhong, Wang, Jingui, Chen, Hongzhong, Li, Menghuan, Li, Fuyou, Zhao, Yanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3047
container_issue 18
container_start_page 3036
container_title Advanced functional materials
container_volume 26
creator Zhao, Lingzhi
Yuan, Wei
Ang, Chung Yen
Qu, Qiuyu
Dai, Yu
Gao, Yilin
Luo, Zhong
Wang, Jingui
Chen, Hongzhong
Li, Menghuan
Li, Fuyou
Zhao, Yanli
description Nanotechnology‐based diagnostics and therapeutics usually suffer from long‐term retention of nanosized devices in the major organs, which may cause unwanted side effects. Herein, we describe the development of ultra‐small silica‐polymer hybrid dots (Sdots) through the self‐assembly between a polyethylene oxide‐poly(propylene oxide)‐polyethylene oxide (PEO‐PPO‐PEO) triblock copolymer and a silica precursor. Sdots feature a silica particle size of 4.2 nm and a hydrated size of 14 nm. The larger hydrated size is related to their polyethylene glycol (PEG) surface ligands, which evolve from the PEO blocks in the copolymer. The densely packed PEG corona can effectively shield the hybrid from reticuloendothelial uptake, which gives rise to rapid and thorough hepatobiliary clearance. In vivo experiments demonstrated that, upon intravenous injection, almost complete clearance of Sdots from mouse bodies could be realized through hepatobiliary excretion within only 5 days. Compared to renal clearable nanoparticles with short blood‐circulation times, the proposed Sdots have a prolonged blood‐circulation half‐life of 19 h, so that the Sdots could effectively accumulate at a subcutaneous transplanted tumor through enhanced penetration and retention. As the PPO core of the Sdots can be utilized to accommodate hydrophobic guest molecules, such as anticancer drugs, these Sdots can prospectively serve as fast‐clearable drug carriers for targeted cancer treatment. Ultra‐small silica‐polymer hybrid nanodots (Sdots) are developed for applications as fast‐clearable drug carriers and imaging probes. The densely packed polyethyleneglycol ligands on the Sdots have a brush‐like regime, which effectively camouflages the hybrid against reticuloendothelial uptake and thus gives rise to rapid and thorough hepatobiliary clearance. Upon intravenous injection, almost complete clearance of the Sdots from mouse bodies could be realized through hepatobiliary excretion within 5 days.
doi_str_mv 10.1002/adfm.201505155
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816013287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816013287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4305-76da2914c61c0116684edaa9d28357c79d60d6f468d6d0d547de513f90abf0063</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEElBYmT2ypNzFsZ2MVSktEh-FgqhYLDd2hMEhxU6B_HtSFVVsTHc6Pc-r0xtFJwh9BEjOlC6rfgLIgCFjO9EBcuQxhSTb3e44348OQ3gFQCFoehDJmXW2UPG0dm1lPJm0C281-bLNC5kZV8aDEEy1cEaT6WhMhrWv3xUZfRfeNN3tXi2tdi35tIooMjFL1dSLLlH5ltzXq8YcRXulcsEc_85e9HgxehhO4qvb8eVwcBUXKQUWC65VkmNacCwAkfMsNVqpXCcZZaIQueageZnyTHMNmqVCG4a0zEEtSgBOe9HpJnfp64-VCY2sbCiMc-rd1KsgMUMOSJNMdGh_gxa-DsGbUi69rbqPJYJcNynXTcptk52Qb4Qv60z7Dy0H5xfXf91449rQmO-tq_yb5IIKJp9uxvL5aS7mk9mdZPQHdOKGXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816013287</pqid></control><display><type>article</type><title>Silica-Polymer Hybrid with Self-Assembled PEG Corona Excreted Rapidly via a Hepatobiliary Route</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zhao, Lingzhi ; Yuan, Wei ; Ang, Chung Yen ; Qu, Qiuyu ; Dai, Yu ; Gao, Yilin ; Luo, Zhong ; Wang, Jingui ; Chen, Hongzhong ; Li, Menghuan ; Li, Fuyou ; Zhao, Yanli</creator><creatorcontrib>Zhao, Lingzhi ; Yuan, Wei ; Ang, Chung Yen ; Qu, Qiuyu ; Dai, Yu ; Gao, Yilin ; Luo, Zhong ; Wang, Jingui ; Chen, Hongzhong ; Li, Menghuan ; Li, Fuyou ; Zhao, Yanli</creatorcontrib><description>Nanotechnology‐based diagnostics and therapeutics usually suffer from long‐term retention of nanosized devices in the major organs, which may cause unwanted side effects. Herein, we describe the development of ultra‐small silica‐polymer hybrid dots (Sdots) through the self‐assembly between a polyethylene oxide‐poly(propylene oxide)‐polyethylene oxide (PEO‐PPO‐PEO) triblock copolymer and a silica precursor. Sdots feature a silica particle size of 4.2 nm and a hydrated size of 14 nm. The larger hydrated size is related to their polyethylene glycol (PEG) surface ligands, which evolve from the PEO blocks in the copolymer. The densely packed PEG corona can effectively shield the hybrid from reticuloendothelial uptake, which gives rise to rapid and thorough hepatobiliary clearance. In vivo experiments demonstrated that, upon intravenous injection, almost complete clearance of Sdots from mouse bodies could be realized through hepatobiliary excretion within only 5 days. Compared to renal clearable nanoparticles with short blood‐circulation times, the proposed Sdots have a prolonged blood‐circulation half‐life of 19 h, so that the Sdots could effectively accumulate at a subcutaneous transplanted tumor through enhanced penetration and retention. As the PPO core of the Sdots can be utilized to accommodate hydrophobic guest molecules, such as anticancer drugs, these Sdots can prospectively serve as fast‐clearable drug carriers for targeted cancer treatment. Ultra‐small silica‐polymer hybrid nanodots (Sdots) are developed for applications as fast‐clearable drug carriers and imaging probes. The densely packed polyethyleneglycol ligands on the Sdots have a brush‐like regime, which effectively camouflages the hybrid against reticuloendothelial uptake and thus gives rise to rapid and thorough hepatobiliary clearance. Upon intravenous injection, almost complete clearance of the Sdots from mouse bodies could be realized through hepatobiliary excretion within 5 days.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201505155</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>biocompatibility ; cancer therapy ; Carriers ; Carriers, Drug ; Clearances ; Drugs ; Excretion ; Nanostructure ; Polyethylene glycol ; Self assembly ; silica nanoparticles ; structure-property relationships</subject><ispartof>Advanced functional materials, 2016-05, Vol.26 (18), p.3036-3047</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4305-76da2914c61c0116684edaa9d28357c79d60d6f468d6d0d547de513f90abf0063</citedby><cites>FETCH-LOGICAL-c4305-76da2914c61c0116684edaa9d28357c79d60d6f468d6d0d547de513f90abf0063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201505155$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201505155$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhao, Lingzhi</creatorcontrib><creatorcontrib>Yuan, Wei</creatorcontrib><creatorcontrib>Ang, Chung Yen</creatorcontrib><creatorcontrib>Qu, Qiuyu</creatorcontrib><creatorcontrib>Dai, Yu</creatorcontrib><creatorcontrib>Gao, Yilin</creatorcontrib><creatorcontrib>Luo, Zhong</creatorcontrib><creatorcontrib>Wang, Jingui</creatorcontrib><creatorcontrib>Chen, Hongzhong</creatorcontrib><creatorcontrib>Li, Menghuan</creatorcontrib><creatorcontrib>Li, Fuyou</creatorcontrib><creatorcontrib>Zhao, Yanli</creatorcontrib><title>Silica-Polymer Hybrid with Self-Assembled PEG Corona Excreted Rapidly via a Hepatobiliary Route</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Nanotechnology‐based diagnostics and therapeutics usually suffer from long‐term retention of nanosized devices in the major organs, which may cause unwanted side effects. Herein, we describe the development of ultra‐small silica‐polymer hybrid dots (Sdots) through the self‐assembly between a polyethylene oxide‐poly(propylene oxide)‐polyethylene oxide (PEO‐PPO‐PEO) triblock copolymer and a silica precursor. Sdots feature a silica particle size of 4.2 nm and a hydrated size of 14 nm. The larger hydrated size is related to their polyethylene glycol (PEG) surface ligands, which evolve from the PEO blocks in the copolymer. The densely packed PEG corona can effectively shield the hybrid from reticuloendothelial uptake, which gives rise to rapid and thorough hepatobiliary clearance. In vivo experiments demonstrated that, upon intravenous injection, almost complete clearance of Sdots from mouse bodies could be realized through hepatobiliary excretion within only 5 days. Compared to renal clearable nanoparticles with short blood‐circulation times, the proposed Sdots have a prolonged blood‐circulation half‐life of 19 h, so that the Sdots could effectively accumulate at a subcutaneous transplanted tumor through enhanced penetration and retention. As the PPO core of the Sdots can be utilized to accommodate hydrophobic guest molecules, such as anticancer drugs, these Sdots can prospectively serve as fast‐clearable drug carriers for targeted cancer treatment. Ultra‐small silica‐polymer hybrid nanodots (Sdots) are developed for applications as fast‐clearable drug carriers and imaging probes. The densely packed polyethyleneglycol ligands on the Sdots have a brush‐like regime, which effectively camouflages the hybrid against reticuloendothelial uptake and thus gives rise to rapid and thorough hepatobiliary clearance. Upon intravenous injection, almost complete clearance of the Sdots from mouse bodies could be realized through hepatobiliary excretion within 5 days.</description><subject>biocompatibility</subject><subject>cancer therapy</subject><subject>Carriers</subject><subject>Carriers, Drug</subject><subject>Clearances</subject><subject>Drugs</subject><subject>Excretion</subject><subject>Nanostructure</subject><subject>Polyethylene glycol</subject><subject>Self assembly</subject><subject>silica nanoparticles</subject><subject>structure-property relationships</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhiMEElBYmT2ypNzFsZ2MVSktEh-FgqhYLDd2hMEhxU6B_HtSFVVsTHc6Pc-r0xtFJwh9BEjOlC6rfgLIgCFjO9EBcuQxhSTb3e44348OQ3gFQCFoehDJmXW2UPG0dm1lPJm0C281-bLNC5kZV8aDEEy1cEaT6WhMhrWv3xUZfRfeNN3tXi2tdi35tIooMjFL1dSLLlH5ltzXq8YcRXulcsEc_85e9HgxehhO4qvb8eVwcBUXKQUWC65VkmNacCwAkfMsNVqpXCcZZaIQueageZnyTHMNmqVCG4a0zEEtSgBOe9HpJnfp64-VCY2sbCiMc-rd1KsgMUMOSJNMdGh_gxa-DsGbUi69rbqPJYJcNynXTcptk52Qb4Qv60z7Dy0H5xfXf91449rQmO-tq_yb5IIKJp9uxvL5aS7mk9mdZPQHdOKGXA</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>Zhao, Lingzhi</creator><creator>Yuan, Wei</creator><creator>Ang, Chung Yen</creator><creator>Qu, Qiuyu</creator><creator>Dai, Yu</creator><creator>Gao, Yilin</creator><creator>Luo, Zhong</creator><creator>Wang, Jingui</creator><creator>Chen, Hongzhong</creator><creator>Li, Menghuan</creator><creator>Li, Fuyou</creator><creator>Zhao, Yanli</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160510</creationdate><title>Silica-Polymer Hybrid with Self-Assembled PEG Corona Excreted Rapidly via a Hepatobiliary Route</title><author>Zhao, Lingzhi ; Yuan, Wei ; Ang, Chung Yen ; Qu, Qiuyu ; Dai, Yu ; Gao, Yilin ; Luo, Zhong ; Wang, Jingui ; Chen, Hongzhong ; Li, Menghuan ; Li, Fuyou ; Zhao, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4305-76da2914c61c0116684edaa9d28357c79d60d6f468d6d0d547de513f90abf0063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>biocompatibility</topic><topic>cancer therapy</topic><topic>Carriers</topic><topic>Carriers, Drug</topic><topic>Clearances</topic><topic>Drugs</topic><topic>Excretion</topic><topic>Nanostructure</topic><topic>Polyethylene glycol</topic><topic>Self assembly</topic><topic>silica nanoparticles</topic><topic>structure-property relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lingzhi</creatorcontrib><creatorcontrib>Yuan, Wei</creatorcontrib><creatorcontrib>Ang, Chung Yen</creatorcontrib><creatorcontrib>Qu, Qiuyu</creatorcontrib><creatorcontrib>Dai, Yu</creatorcontrib><creatorcontrib>Gao, Yilin</creatorcontrib><creatorcontrib>Luo, Zhong</creatorcontrib><creatorcontrib>Wang, Jingui</creatorcontrib><creatorcontrib>Chen, Hongzhong</creatorcontrib><creatorcontrib>Li, Menghuan</creatorcontrib><creatorcontrib>Li, Fuyou</creatorcontrib><creatorcontrib>Zhao, Yanli</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lingzhi</au><au>Yuan, Wei</au><au>Ang, Chung Yen</au><au>Qu, Qiuyu</au><au>Dai, Yu</au><au>Gao, Yilin</au><au>Luo, Zhong</au><au>Wang, Jingui</au><au>Chen, Hongzhong</au><au>Li, Menghuan</au><au>Li, Fuyou</au><au>Zhao, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silica-Polymer Hybrid with Self-Assembled PEG Corona Excreted Rapidly via a Hepatobiliary Route</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2016-05-10</date><risdate>2016</risdate><volume>26</volume><issue>18</issue><spage>3036</spage><epage>3047</epage><pages>3036-3047</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Nanotechnology‐based diagnostics and therapeutics usually suffer from long‐term retention of nanosized devices in the major organs, which may cause unwanted side effects. Herein, we describe the development of ultra‐small silica‐polymer hybrid dots (Sdots) through the self‐assembly between a polyethylene oxide‐poly(propylene oxide)‐polyethylene oxide (PEO‐PPO‐PEO) triblock copolymer and a silica precursor. Sdots feature a silica particle size of 4.2 nm and a hydrated size of 14 nm. The larger hydrated size is related to their polyethylene glycol (PEG) surface ligands, which evolve from the PEO blocks in the copolymer. The densely packed PEG corona can effectively shield the hybrid from reticuloendothelial uptake, which gives rise to rapid and thorough hepatobiliary clearance. In vivo experiments demonstrated that, upon intravenous injection, almost complete clearance of Sdots from mouse bodies could be realized through hepatobiliary excretion within only 5 days. Compared to renal clearable nanoparticles with short blood‐circulation times, the proposed Sdots have a prolonged blood‐circulation half‐life of 19 h, so that the Sdots could effectively accumulate at a subcutaneous transplanted tumor through enhanced penetration and retention. As the PPO core of the Sdots can be utilized to accommodate hydrophobic guest molecules, such as anticancer drugs, these Sdots can prospectively serve as fast‐clearable drug carriers for targeted cancer treatment. Ultra‐small silica‐polymer hybrid nanodots (Sdots) are developed for applications as fast‐clearable drug carriers and imaging probes. The densely packed polyethyleneglycol ligands on the Sdots have a brush‐like regime, which effectively camouflages the hybrid against reticuloendothelial uptake and thus gives rise to rapid and thorough hepatobiliary clearance. Upon intravenous injection, almost complete clearance of the Sdots from mouse bodies could be realized through hepatobiliary excretion within 5 days.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201505155</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2016-05, Vol.26 (18), p.3036-3047
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1816013287
source Wiley Online Library - AutoHoldings Journals
subjects biocompatibility
cancer therapy
Carriers
Carriers, Drug
Clearances
Drugs
Excretion
Nanostructure
Polyethylene glycol
Self assembly
silica nanoparticles
structure-property relationships
title Silica-Polymer Hybrid with Self-Assembled PEG Corona Excreted Rapidly via a Hepatobiliary Route
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silica-Polymer%20Hybrid%20with%20Self-Assembled%20PEG%20Corona%20Excreted%20Rapidly%20via%20a%20Hepatobiliary%20Route&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhao,%20Lingzhi&rft.date=2016-05-10&rft.volume=26&rft.issue=18&rft.spage=3036&rft.epage=3047&rft.pages=3036-3047&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201505155&rft_dat=%3Cproquest_cross%3E1816013287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816013287&rft_id=info:pmid/&rfr_iscdi=true