SimCT: A measure of semantic similarity adapted to hierarchies of concepts

The Calculating of the similarity between data is a key problem in several disciplines such as machine learning, information retrieval (IR) and data analysis. In some areas such as social resilience, the similarity measures can be used to find the similarities between traumatized individuals or resi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer science and information security 2016-04, Vol.14 (4), p.37-37
Hauptverfasser: Tiekoura, Coulibaly Kpinna, Marcellin, Brou Konan, Odilon, Achiepo, Michel, Babri, Boko, Aka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 4
container_start_page 37
container_title International journal of computer science and information security
container_volume 14
creator Tiekoura, Coulibaly Kpinna
Marcellin, Brou Konan
Odilon, Achiepo
Michel, Babri
Boko, Aka
description The Calculating of the similarity between data is a key problem in several disciplines such as machine learning, information retrieval (IR) and data analysis. In some areas such as social resilience, the similarity measures can be used to find the similarities between traumatized individuals or resilience's dimensions. In this paper, we propose a measure of semantic similarity used in many applications including clustering and information retrieval. It relies on a knowledge base represented as a hierarchy of concepts (ontology, graph, taxonomy). Its uniqueness with respect to previous proposals is the difference between the indices of similarity that it establishes between brothers concepts located at the same hierarchical level and having the same direct ancestor. In addition, our semantic similarity measure provides better modularity in clustering compared with Wu and Palmer's similarity measure and Proxygenea 3.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816012150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816012150</sourcerecordid><originalsourceid>FETCH-LOGICAL-p610-cb87f0d2f2003e382bd9b13851003876606c58742de99d69e54ec9b77e3389923</originalsourceid><addsrcrecordid>eNpdjktLxDAYRYsgOIzzHwJu3BTyaF7uhuKTgVnYfUmTr5ihbWqSLvz3RnTl3RwuHC73qtoR3ciac4xvqkNKF1zCSMMJ31Vv735uuwd0RDOYtEVAYUQJZrNkb1Hys59M9PkLGWfWDA7lgD48RBNtQfqxbVgsrDndVtejmRIc_rivuqfHrn2pT-fn1_Z4qldBcG0HJUfs6EjLCWCKDk4PhClOSldSCCwsV7KhDrR2QgNvwOpBSmBMaU3Zvrr_nV1j-Nwg5X72ycI0mQXClnqiiMCEEo6LevdPvYQtLuVcT6TSvOFSCfYNJ1xUgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789545786</pqid></control><display><type>article</type><title>SimCT: A measure of semantic similarity adapted to hierarchies of concepts</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tiekoura, Coulibaly Kpinna ; Marcellin, Brou Konan ; Odilon, Achiepo ; Michel, Babri ; Boko, Aka</creator><creatorcontrib>Tiekoura, Coulibaly Kpinna ; Marcellin, Brou Konan ; Odilon, Achiepo ; Michel, Babri ; Boko, Aka</creatorcontrib><description>The Calculating of the similarity between data is a key problem in several disciplines such as machine learning, information retrieval (IR) and data analysis. In some areas such as social resilience, the similarity measures can be used to find the similarities between traumatized individuals or resilience's dimensions. In this paper, we propose a measure of semantic similarity used in many applications including clustering and information retrieval. It relies on a knowledge base represented as a hierarchy of concepts (ontology, graph, taxonomy). Its uniqueness with respect to previous proposals is the difference between the indices of similarity that it establishes between brothers concepts located at the same hierarchical level and having the same direct ancestor. In addition, our semantic similarity measure provides better modularity in clustering compared with Wu and Palmer's similarity measure and Proxygenea 3.</description><identifier>EISSN: 1947-5500</identifier><language>eng</language><publisher>Pittsburgh: L J S Publishing</publisher><subject>Clustering ; Computer science ; Graphical representations ; Hierarchies ; Information retrieval ; Knowledge representation ; Resilience ; Semantics ; Similarity</subject><ispartof>International journal of computer science and information security, 2016-04, Vol.14 (4), p.37-37</ispartof><rights>Copyright L J S Publishing Apr 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782</link.rule.ids></links><search><creatorcontrib>Tiekoura, Coulibaly Kpinna</creatorcontrib><creatorcontrib>Marcellin, Brou Konan</creatorcontrib><creatorcontrib>Odilon, Achiepo</creatorcontrib><creatorcontrib>Michel, Babri</creatorcontrib><creatorcontrib>Boko, Aka</creatorcontrib><title>SimCT: A measure of semantic similarity adapted to hierarchies of concepts</title><title>International journal of computer science and information security</title><description>The Calculating of the similarity between data is a key problem in several disciplines such as machine learning, information retrieval (IR) and data analysis. In some areas such as social resilience, the similarity measures can be used to find the similarities between traumatized individuals or resilience's dimensions. In this paper, we propose a measure of semantic similarity used in many applications including clustering and information retrieval. It relies on a knowledge base represented as a hierarchy of concepts (ontology, graph, taxonomy). Its uniqueness with respect to previous proposals is the difference between the indices of similarity that it establishes between brothers concepts located at the same hierarchical level and having the same direct ancestor. In addition, our semantic similarity measure provides better modularity in clustering compared with Wu and Palmer's similarity measure and Proxygenea 3.</description><subject>Clustering</subject><subject>Computer science</subject><subject>Graphical representations</subject><subject>Hierarchies</subject><subject>Information retrieval</subject><subject>Knowledge representation</subject><subject>Resilience</subject><subject>Semantics</subject><subject>Similarity</subject><issn>1947-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdjktLxDAYRYsgOIzzHwJu3BTyaF7uhuKTgVnYfUmTr5ihbWqSLvz3RnTl3RwuHC73qtoR3ciac4xvqkNKF1zCSMMJ31Vv735uuwd0RDOYtEVAYUQJZrNkb1Hys59M9PkLGWfWDA7lgD48RBNtQfqxbVgsrDndVtejmRIc_rivuqfHrn2pT-fn1_Z4qldBcG0HJUfs6EjLCWCKDk4PhClOSldSCCwsV7KhDrR2QgNvwOpBSmBMaU3Zvrr_nV1j-Nwg5X72ycI0mQXClnqiiMCEEo6LevdPvYQtLuVcT6TSvOFSCfYNJ1xUgg</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Tiekoura, Coulibaly Kpinna</creator><creator>Marcellin, Brou Konan</creator><creator>Odilon, Achiepo</creator><creator>Michel, Babri</creator><creator>Boko, Aka</creator><general>L J S Publishing</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160401</creationdate><title>SimCT: A measure of semantic similarity adapted to hierarchies of concepts</title><author>Tiekoura, Coulibaly Kpinna ; Marcellin, Brou Konan ; Odilon, Achiepo ; Michel, Babri ; Boko, Aka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p610-cb87f0d2f2003e382bd9b13851003876606c58742de99d69e54ec9b77e3389923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Clustering</topic><topic>Computer science</topic><topic>Graphical representations</topic><topic>Hierarchies</topic><topic>Information retrieval</topic><topic>Knowledge representation</topic><topic>Resilience</topic><topic>Semantics</topic><topic>Similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Tiekoura, Coulibaly Kpinna</creatorcontrib><creatorcontrib>Marcellin, Brou Konan</creatorcontrib><creatorcontrib>Odilon, Achiepo</creatorcontrib><creatorcontrib>Michel, Babri</creatorcontrib><creatorcontrib>Boko, Aka</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer science and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiekoura, Coulibaly Kpinna</au><au>Marcellin, Brou Konan</au><au>Odilon, Achiepo</au><au>Michel, Babri</au><au>Boko, Aka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SimCT: A measure of semantic similarity adapted to hierarchies of concepts</atitle><jtitle>International journal of computer science and information security</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>14</volume><issue>4</issue><spage>37</spage><epage>37</epage><pages>37-37</pages><eissn>1947-5500</eissn><abstract>The Calculating of the similarity between data is a key problem in several disciplines such as machine learning, information retrieval (IR) and data analysis. In some areas such as social resilience, the similarity measures can be used to find the similarities between traumatized individuals or resilience's dimensions. In this paper, we propose a measure of semantic similarity used in many applications including clustering and information retrieval. It relies on a knowledge base represented as a hierarchy of concepts (ontology, graph, taxonomy). Its uniqueness with respect to previous proposals is the difference between the indices of similarity that it establishes between brothers concepts located at the same hierarchical level and having the same direct ancestor. In addition, our semantic similarity measure provides better modularity in clustering compared with Wu and Palmer's similarity measure and Proxygenea 3.</abstract><cop>Pittsburgh</cop><pub>L J S Publishing</pub><tpages>1</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1947-5500
ispartof International journal of computer science and information security, 2016-04, Vol.14 (4), p.37-37
issn 1947-5500
language eng
recordid cdi_proquest_miscellaneous_1816012150
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Clustering
Computer science
Graphical representations
Hierarchies
Information retrieval
Knowledge representation
Resilience
Semantics
Similarity
title SimCT: A measure of semantic similarity adapted to hierarchies of concepts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SimCT:%20A%20measure%20of%20semantic%20similarity%20adapted%20to%20hierarchies%20of%20concepts&rft.jtitle=International%20journal%20of%20computer%20science%20and%20information%20security&rft.au=Tiekoura,%20Coulibaly%20Kpinna&rft.date=2016-04-01&rft.volume=14&rft.issue=4&rft.spage=37&rft.epage=37&rft.pages=37-37&rft.eissn=1947-5500&rft_id=info:doi/&rft_dat=%3Cproquest%3E1816012150%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789545786&rft_id=info:pmid/&rfr_iscdi=true