SimCT: A measure of semantic similarity adapted to hierarchies of concepts
The Calculating of the similarity between data is a key problem in several disciplines such as machine learning, information retrieval (IR) and data analysis. In some areas such as social resilience, the similarity measures can be used to find the similarities between traumatized individuals or resi...
Gespeichert in:
Veröffentlicht in: | International journal of computer science and information security 2016-04, Vol.14 (4), p.37-37 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 4 |
container_start_page | 37 |
container_title | International journal of computer science and information security |
container_volume | 14 |
creator | Tiekoura, Coulibaly Kpinna Marcellin, Brou Konan Odilon, Achiepo Michel, Babri Boko, Aka |
description | The Calculating of the similarity between data is a key problem in several disciplines such as machine learning, information retrieval (IR) and data analysis. In some areas such as social resilience, the similarity measures can be used to find the similarities between traumatized individuals or resilience's dimensions. In this paper, we propose a measure of semantic similarity used in many applications including clustering and information retrieval. It relies on a knowledge base represented as a hierarchy of concepts (ontology, graph, taxonomy). Its uniqueness with respect to previous proposals is the difference between the indices of similarity that it establishes between brothers concepts located at the same hierarchical level and having the same direct ancestor. In addition, our semantic similarity measure provides better modularity in clustering compared with Wu and Palmer's similarity measure and Proxygenea 3. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816012150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816012150</sourcerecordid><originalsourceid>FETCH-LOGICAL-p610-cb87f0d2f2003e382bd9b13851003876606c58742de99d69e54ec9b77e3389923</originalsourceid><addsrcrecordid>eNpdjktLxDAYRYsgOIzzHwJu3BTyaF7uhuKTgVnYfUmTr5ihbWqSLvz3RnTl3RwuHC73qtoR3ciac4xvqkNKF1zCSMMJ31Vv735uuwd0RDOYtEVAYUQJZrNkb1Hys59M9PkLGWfWDA7lgD48RBNtQfqxbVgsrDndVtejmRIc_rivuqfHrn2pT-fn1_Z4qldBcG0HJUfs6EjLCWCKDk4PhClOSldSCCwsV7KhDrR2QgNvwOpBSmBMaU3Zvrr_nV1j-Nwg5X72ycI0mQXClnqiiMCEEo6LevdPvYQtLuVcT6TSvOFSCfYNJ1xUgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789545786</pqid></control><display><type>article</type><title>SimCT: A measure of semantic similarity adapted to hierarchies of concepts</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tiekoura, Coulibaly Kpinna ; Marcellin, Brou Konan ; Odilon, Achiepo ; Michel, Babri ; Boko, Aka</creator><creatorcontrib>Tiekoura, Coulibaly Kpinna ; Marcellin, Brou Konan ; Odilon, Achiepo ; Michel, Babri ; Boko, Aka</creatorcontrib><description>The Calculating of the similarity between data is a key problem in several disciplines such as machine learning, information retrieval (IR) and data analysis. In some areas such as social resilience, the similarity measures can be used to find the similarities between traumatized individuals or resilience's dimensions. In this paper, we propose a measure of semantic similarity used in many applications including clustering and information retrieval. It relies on a knowledge base represented as a hierarchy of concepts (ontology, graph, taxonomy). Its uniqueness with respect to previous proposals is the difference between the indices of similarity that it establishes between brothers concepts located at the same hierarchical level and having the same direct ancestor. In addition, our semantic similarity measure provides better modularity in clustering compared with Wu and Palmer's similarity measure and Proxygenea 3.</description><identifier>EISSN: 1947-5500</identifier><language>eng</language><publisher>Pittsburgh: L J S Publishing</publisher><subject>Clustering ; Computer science ; Graphical representations ; Hierarchies ; Information retrieval ; Knowledge representation ; Resilience ; Semantics ; Similarity</subject><ispartof>International journal of computer science and information security, 2016-04, Vol.14 (4), p.37-37</ispartof><rights>Copyright L J S Publishing Apr 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782</link.rule.ids></links><search><creatorcontrib>Tiekoura, Coulibaly Kpinna</creatorcontrib><creatorcontrib>Marcellin, Brou Konan</creatorcontrib><creatorcontrib>Odilon, Achiepo</creatorcontrib><creatorcontrib>Michel, Babri</creatorcontrib><creatorcontrib>Boko, Aka</creatorcontrib><title>SimCT: A measure of semantic similarity adapted to hierarchies of concepts</title><title>International journal of computer science and information security</title><description>The Calculating of the similarity between data is a key problem in several disciplines such as machine learning, information retrieval (IR) and data analysis. In some areas such as social resilience, the similarity measures can be used to find the similarities between traumatized individuals or resilience's dimensions. In this paper, we propose a measure of semantic similarity used in many applications including clustering and information retrieval. It relies on a knowledge base represented as a hierarchy of concepts (ontology, graph, taxonomy). Its uniqueness with respect to previous proposals is the difference between the indices of similarity that it establishes between brothers concepts located at the same hierarchical level and having the same direct ancestor. In addition, our semantic similarity measure provides better modularity in clustering compared with Wu and Palmer's similarity measure and Proxygenea 3.</description><subject>Clustering</subject><subject>Computer science</subject><subject>Graphical representations</subject><subject>Hierarchies</subject><subject>Information retrieval</subject><subject>Knowledge representation</subject><subject>Resilience</subject><subject>Semantics</subject><subject>Similarity</subject><issn>1947-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdjktLxDAYRYsgOIzzHwJu3BTyaF7uhuKTgVnYfUmTr5ihbWqSLvz3RnTl3RwuHC73qtoR3ciac4xvqkNKF1zCSMMJ31Vv735uuwd0RDOYtEVAYUQJZrNkb1Hys59M9PkLGWfWDA7lgD48RBNtQfqxbVgsrDndVtejmRIc_rivuqfHrn2pT-fn1_Z4qldBcG0HJUfs6EjLCWCKDk4PhClOSldSCCwsV7KhDrR2QgNvwOpBSmBMaU3Zvrr_nV1j-Nwg5X72ycI0mQXClnqiiMCEEo6LevdPvYQtLuVcT6TSvOFSCfYNJ1xUgg</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Tiekoura, Coulibaly Kpinna</creator><creator>Marcellin, Brou Konan</creator><creator>Odilon, Achiepo</creator><creator>Michel, Babri</creator><creator>Boko, Aka</creator><general>L J S Publishing</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160401</creationdate><title>SimCT: A measure of semantic similarity adapted to hierarchies of concepts</title><author>Tiekoura, Coulibaly Kpinna ; Marcellin, Brou Konan ; Odilon, Achiepo ; Michel, Babri ; Boko, Aka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p610-cb87f0d2f2003e382bd9b13851003876606c58742de99d69e54ec9b77e3389923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Clustering</topic><topic>Computer science</topic><topic>Graphical representations</topic><topic>Hierarchies</topic><topic>Information retrieval</topic><topic>Knowledge representation</topic><topic>Resilience</topic><topic>Semantics</topic><topic>Similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Tiekoura, Coulibaly Kpinna</creatorcontrib><creatorcontrib>Marcellin, Brou Konan</creatorcontrib><creatorcontrib>Odilon, Achiepo</creatorcontrib><creatorcontrib>Michel, Babri</creatorcontrib><creatorcontrib>Boko, Aka</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer science and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiekoura, Coulibaly Kpinna</au><au>Marcellin, Brou Konan</au><au>Odilon, Achiepo</au><au>Michel, Babri</au><au>Boko, Aka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SimCT: A measure of semantic similarity adapted to hierarchies of concepts</atitle><jtitle>International journal of computer science and information security</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>14</volume><issue>4</issue><spage>37</spage><epage>37</epage><pages>37-37</pages><eissn>1947-5500</eissn><abstract>The Calculating of the similarity between data is a key problem in several disciplines such as machine learning, information retrieval (IR) and data analysis. In some areas such as social resilience, the similarity measures can be used to find the similarities between traumatized individuals or resilience's dimensions. In this paper, we propose a measure of semantic similarity used in many applications including clustering and information retrieval. It relies on a knowledge base represented as a hierarchy of concepts (ontology, graph, taxonomy). Its uniqueness with respect to previous proposals is the difference between the indices of similarity that it establishes between brothers concepts located at the same hierarchical level and having the same direct ancestor. In addition, our semantic similarity measure provides better modularity in clustering compared with Wu and Palmer's similarity measure and Proxygenea 3.</abstract><cop>Pittsburgh</cop><pub>L J S Publishing</pub><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1947-5500 |
ispartof | International journal of computer science and information security, 2016-04, Vol.14 (4), p.37-37 |
issn | 1947-5500 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816012150 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Clustering Computer science Graphical representations Hierarchies Information retrieval Knowledge representation Resilience Semantics Similarity |
title | SimCT: A measure of semantic similarity adapted to hierarchies of concepts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SimCT:%20A%20measure%20of%20semantic%20similarity%20adapted%20to%20hierarchies%20of%20concepts&rft.jtitle=International%20journal%20of%20computer%20science%20and%20information%20security&rft.au=Tiekoura,%20Coulibaly%20Kpinna&rft.date=2016-04-01&rft.volume=14&rft.issue=4&rft.spage=37&rft.epage=37&rft.pages=37-37&rft.eissn=1947-5500&rft_id=info:doi/&rft_dat=%3Cproquest%3E1816012150%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789545786&rft_id=info:pmid/&rfr_iscdi=true |