Biexponential photon antibunching: recombination kinetics within the Förster-cycle in DMSO
Time-resolved experiments with pulsed-laser excitation are the standard approach to map the dynamic evolution of excited states, but ground-state kinetics remain hidden or require pump-dump-probe schemes. Here, we exploit the so-called photon antibunching, a purely quantum-optical effect related to...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2016-04, Vol.18 (15), p.10281-10288 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10288 |
---|---|
container_issue | 15 |
container_start_page | 10281 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 18 |
creator | Vester, Michael Grueter, Andreas Finkler, Björn Becker, Robert Jung, Gregor |
description | Time-resolved experiments with pulsed-laser excitation are the standard approach to map the dynamic evolution of excited states, but ground-state kinetics remain hidden or require pump-dump-probe schemes. Here, we exploit the so-called photon antibunching, a purely quantum-optical effect related to single molecule detection to assess the rate constants for a chemical reaction in the electronic ground state. The measurement of the second-order correlation function g((2)), i.e. the evaluation of inter-photon arrival times, is applied to the reprotonation in a Förster-cycle. We find that the antibunching of three different photoacids in the aprotic solvent DMSO significantly differs from the behavior in water. The longer decay constant of the biexponential antibunching tl is linked to the bimolecular reprotonation kinetics of the fully separated ion-pair, independent of the acidic additives. The value of the corresponding bimolecular rate constant, kp = 4 × 10(9) M(-1) s(-1), indicates diffusion-controlled reprotonation. The analysis of tl also allows for the extraction of the separation yield of proton and the conjugated base after excitation and amounts to approximately 15%. The shorter time component ts is connected to the decay of the solvent-separated ion pair. The associated time constant for geminate reprotonation is approximately 3 ± 1 ns in agreement with independent tcspc experiments. These experiments verify that the transfer of quantum-optical experiments to problems in chemistry enables mechanistic conclusions which are hardly accessible by other methods. |
doi_str_mv | 10.1039/c6cp00718j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816011896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1781539101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-7dc414c8a3902b25f5b33032101bedf73cb78493e0ac3c46f307b9eb98a896363</originalsourceid><addsrcrecordid>eNqFkE1OwzAUhC0EolDYcACUJUIKPOclccIOAuVHRUUCViwi23WoS5oE2xH0YlyAi5HS0i2r9zOfZqQh5IDCCQVMT2UsGwBGk-kG2aFhjH4KSbi53lncI7vWTgGARhS3SS9gEEDIcIe8XGj12dSVqpzmpddMaldXHu8u0VZyoqvXM88oWc-ErrjTnfamK-W0tN6Hdp3uuYnyBt9fxjplfDmXpfK67-X942iPbBW8tGp_NfvkeXD1lN34w9H1bXY-9CUG4Hw2liENZcIxhUAEUREJRMCAAhVqXDCUgiVhigq4RBnGBQITqRJpwpM0xhj75Gjp25j6vVXW5TNtpSpLXqm6tTlNaAyULuB_UZbQCNMuukOPl6g0tbVGFXlj9IybeU4hX_SeZ3H28Nv7XQcfrnxbMVPjNfpXNP4AzRd96w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781539101</pqid></control><display><type>article</type><title>Biexponential photon antibunching: recombination kinetics within the Förster-cycle in DMSO</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Vester, Michael ; Grueter, Andreas ; Finkler, Björn ; Becker, Robert ; Jung, Gregor</creator><creatorcontrib>Vester, Michael ; Grueter, Andreas ; Finkler, Björn ; Becker, Robert ; Jung, Gregor</creatorcontrib><description>Time-resolved experiments with pulsed-laser excitation are the standard approach to map the dynamic evolution of excited states, but ground-state kinetics remain hidden or require pump-dump-probe schemes. Here, we exploit the so-called photon antibunching, a purely quantum-optical effect related to single molecule detection to assess the rate constants for a chemical reaction in the electronic ground state. The measurement of the second-order correlation function g((2)), i.e. the evaluation of inter-photon arrival times, is applied to the reprotonation in a Förster-cycle. We find that the antibunching of three different photoacids in the aprotic solvent DMSO significantly differs from the behavior in water. The longer decay constant of the biexponential antibunching tl is linked to the bimolecular reprotonation kinetics of the fully separated ion-pair, independent of the acidic additives. The value of the corresponding bimolecular rate constant, kp = 4 × 10(9) M(-1) s(-1), indicates diffusion-controlled reprotonation. The analysis of tl also allows for the extraction of the separation yield of proton and the conjugated base after excitation and amounts to approximately 15%. The shorter time component ts is connected to the decay of the solvent-separated ion pair. The associated time constant for geminate reprotonation is approximately 3 ± 1 ns in agreement with independent tcspc experiments. These experiments verify that the transfer of quantum-optical experiments to problems in chemistry enables mechanistic conclusions which are hardly accessible by other methods.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c6cp00718j</identifier><identifier>PMID: 27020473</identifier><language>eng</language><publisher>England</publisher><subject>Constants ; Decay ; Electronics ; Excitation ; Extraction ; Ground state ; Photons ; Rate constants</subject><ispartof>Physical chemistry chemical physics : PCCP, 2016-04, Vol.18 (15), p.10281-10288</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-7dc414c8a3902b25f5b33032101bedf73cb78493e0ac3c46f307b9eb98a896363</citedby><cites>FETCH-LOGICAL-c320t-7dc414c8a3902b25f5b33032101bedf73cb78493e0ac3c46f307b9eb98a896363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27020473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vester, Michael</creatorcontrib><creatorcontrib>Grueter, Andreas</creatorcontrib><creatorcontrib>Finkler, Björn</creatorcontrib><creatorcontrib>Becker, Robert</creatorcontrib><creatorcontrib>Jung, Gregor</creatorcontrib><title>Biexponential photon antibunching: recombination kinetics within the Förster-cycle in DMSO</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Time-resolved experiments with pulsed-laser excitation are the standard approach to map the dynamic evolution of excited states, but ground-state kinetics remain hidden or require pump-dump-probe schemes. Here, we exploit the so-called photon antibunching, a purely quantum-optical effect related to single molecule detection to assess the rate constants for a chemical reaction in the electronic ground state. The measurement of the second-order correlation function g((2)), i.e. the evaluation of inter-photon arrival times, is applied to the reprotonation in a Förster-cycle. We find that the antibunching of three different photoacids in the aprotic solvent DMSO significantly differs from the behavior in water. The longer decay constant of the biexponential antibunching tl is linked to the bimolecular reprotonation kinetics of the fully separated ion-pair, independent of the acidic additives. The value of the corresponding bimolecular rate constant, kp = 4 × 10(9) M(-1) s(-1), indicates diffusion-controlled reprotonation. The analysis of tl also allows for the extraction of the separation yield of proton and the conjugated base after excitation and amounts to approximately 15%. The shorter time component ts is connected to the decay of the solvent-separated ion pair. The associated time constant for geminate reprotonation is approximately 3 ± 1 ns in agreement with independent tcspc experiments. These experiments verify that the transfer of quantum-optical experiments to problems in chemistry enables mechanistic conclusions which are hardly accessible by other methods.</description><subject>Constants</subject><subject>Decay</subject><subject>Electronics</subject><subject>Excitation</subject><subject>Extraction</subject><subject>Ground state</subject><subject>Photons</subject><subject>Rate constants</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAUhC0EolDYcACUJUIKPOclccIOAuVHRUUCViwi23WoS5oE2xH0YlyAi5HS0i2r9zOfZqQh5IDCCQVMT2UsGwBGk-kG2aFhjH4KSbi53lncI7vWTgGARhS3SS9gEEDIcIe8XGj12dSVqpzmpddMaldXHu8u0VZyoqvXM88oWc-ErrjTnfamK-W0tN6Hdp3uuYnyBt9fxjplfDmXpfK67-X942iPbBW8tGp_NfvkeXD1lN34w9H1bXY-9CUG4Hw2liENZcIxhUAEUREJRMCAAhVqXDCUgiVhigq4RBnGBQITqRJpwpM0xhj75Gjp25j6vVXW5TNtpSpLXqm6tTlNaAyULuB_UZbQCNMuukOPl6g0tbVGFXlj9IybeU4hX_SeZ3H28Nv7XQcfrnxbMVPjNfpXNP4AzRd96w</recordid><startdate>20160421</startdate><enddate>20160421</enddate><creator>Vester, Michael</creator><creator>Grueter, Andreas</creator><creator>Finkler, Björn</creator><creator>Becker, Robert</creator><creator>Jung, Gregor</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160421</creationdate><title>Biexponential photon antibunching: recombination kinetics within the Förster-cycle in DMSO</title><author>Vester, Michael ; Grueter, Andreas ; Finkler, Björn ; Becker, Robert ; Jung, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-7dc414c8a3902b25f5b33032101bedf73cb78493e0ac3c46f307b9eb98a896363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Constants</topic><topic>Decay</topic><topic>Electronics</topic><topic>Excitation</topic><topic>Extraction</topic><topic>Ground state</topic><topic>Photons</topic><topic>Rate constants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vester, Michael</creatorcontrib><creatorcontrib>Grueter, Andreas</creatorcontrib><creatorcontrib>Finkler, Björn</creatorcontrib><creatorcontrib>Becker, Robert</creatorcontrib><creatorcontrib>Jung, Gregor</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vester, Michael</au><au>Grueter, Andreas</au><au>Finkler, Björn</au><au>Becker, Robert</au><au>Jung, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biexponential photon antibunching: recombination kinetics within the Förster-cycle in DMSO</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-04-21</date><risdate>2016</risdate><volume>18</volume><issue>15</issue><spage>10281</spage><epage>10288</epage><pages>10281-10288</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Time-resolved experiments with pulsed-laser excitation are the standard approach to map the dynamic evolution of excited states, but ground-state kinetics remain hidden or require pump-dump-probe schemes. Here, we exploit the so-called photon antibunching, a purely quantum-optical effect related to single molecule detection to assess the rate constants for a chemical reaction in the electronic ground state. The measurement of the second-order correlation function g((2)), i.e. the evaluation of inter-photon arrival times, is applied to the reprotonation in a Förster-cycle. We find that the antibunching of three different photoacids in the aprotic solvent DMSO significantly differs from the behavior in water. The longer decay constant of the biexponential antibunching tl is linked to the bimolecular reprotonation kinetics of the fully separated ion-pair, independent of the acidic additives. The value of the corresponding bimolecular rate constant, kp = 4 × 10(9) M(-1) s(-1), indicates diffusion-controlled reprotonation. The analysis of tl also allows for the extraction of the separation yield of proton and the conjugated base after excitation and amounts to approximately 15%. The shorter time component ts is connected to the decay of the solvent-separated ion pair. The associated time constant for geminate reprotonation is approximately 3 ± 1 ns in agreement with independent tcspc experiments. These experiments verify that the transfer of quantum-optical experiments to problems in chemistry enables mechanistic conclusions which are hardly accessible by other methods.</abstract><cop>England</cop><pmid>27020473</pmid><doi>10.1039/c6cp00718j</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2016-04, Vol.18 (15), p.10281-10288 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816011896 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Constants Decay Electronics Excitation Extraction Ground state Photons Rate constants |
title | Biexponential photon antibunching: recombination kinetics within the Förster-cycle in DMSO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biexponential%20photon%20antibunching:%20recombination%20kinetics%20within%20the%20F%C3%B6rster-cycle%20in%20DMSO&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Vester,%20Michael&rft.date=2016-04-21&rft.volume=18&rft.issue=15&rft.spage=10281&rft.epage=10288&rft.pages=10281-10288&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c6cp00718j&rft_dat=%3Cproquest_cross%3E1781539101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781539101&rft_id=info:pmid/27020473&rfr_iscdi=true |