From macroalgae to liquid fuel viawaste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating
This article showcases a proof-of-concept in the production of high quality renewable biofuel from algae. Here, we introduce a path combining a number of approaches that, when integrated as a whole, create a process that takes algae grown in waste-water through to a liquid fuel containing fractions...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2016-05, Vol.9 (5), p.1828-1840 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1840 |
---|---|
container_issue | 5 |
container_start_page | 1828 |
container_title | Energy & environmental science |
container_volume | 9 |
creator | Cole, Andrew Dinburg, Yakov Haynes, Brian S He, Yaya Herskowitz, Moti Jazrawi, Christopher Landau, Miron Liang, Xiao Magnusson, Marie Maschmeyer, Thomas Masters, Anthony F Meiri, Nora Neveux, Nicolas de Nys, Rocky Paul, Nicholas Rabaev, Moshe Vidruk-Nehemya, Roxana Yuen, Alexander KL |
description | This article showcases a proof-of-concept in the production of high quality renewable biofuel from algae. Here, we introduce a path combining a number of approaches that, when integrated as a whole, create a process that takes algae grown in waste-water through to a liquid fuel containing fractions ready for blending with regular gasoline, jet fuel and diesel. With the overarching goal of reducing the nitrogen content invariably associated with whole algal biomass, we apply a number of approaches including (i) nutrient starvation to reduce the internal nitrogen of the freshwater alga Oedogonium(ii) continuous co-solvent (10 wt% n-heptane) hydrothermal liquefaction (HTL) to produce a non-polar biocrude containing |
doi_str_mv | 10.1039/c6ee00414h |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816011832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816011832</sourcerecordid><originalsourceid>FETCH-LOGICAL-p662-de0115ac324f742a046865b7da25c18935f1b1e3adb494087b84f4d7efc83e3d3</originalsourceid><addsrcrecordid>eNqFjT1PwzAYhC0EEqWw8As8MjTgr9jOiCoKSJVYuldv7DepURK3TkJh5J9T0TIz3en03B0ht5zdcyaLB6cRGVNcbc7IhJtcZblh-vzP60Jckqu-f2dMC2aKCflepNjSFlyK0NSAdIi0CbsxeFqN2NCPAHvoB8z2MGCiCVv0AYYQuxndfPkUhw2mFho6busEPnT1jDpIZeyoD_EzeDxiNXa_LQqdPxUTHpKuviYXFTQ93px0SlaLp9X8JVu-Pb_OH5fZVmuReWSc5-CkUJVRApjSVuel8SByx20h84qXHCX4UhWKWVNaVSlvsHJWovRySu6Os9sUdyP2w7oNvcOmgQ7j2K-55fpwYaX4HzUFKyQTuZU_nqlzfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790930258</pqid></control><display><type>article</type><title>From macroalgae to liquid fuel viawaste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cole, Andrew ; Dinburg, Yakov ; Haynes, Brian S ; He, Yaya ; Herskowitz, Moti ; Jazrawi, Christopher ; Landau, Miron ; Liang, Xiao ; Magnusson, Marie ; Maschmeyer, Thomas ; Masters, Anthony F ; Meiri, Nora ; Neveux, Nicolas ; de Nys, Rocky ; Paul, Nicholas ; Rabaev, Moshe ; Vidruk-Nehemya, Roxana ; Yuen, Alexander KL</creator><creatorcontrib>Cole, Andrew ; Dinburg, Yakov ; Haynes, Brian S ; He, Yaya ; Herskowitz, Moti ; Jazrawi, Christopher ; Landau, Miron ; Liang, Xiao ; Magnusson, Marie ; Maschmeyer, Thomas ; Masters, Anthony F ; Meiri, Nora ; Neveux, Nicolas ; de Nys, Rocky ; Paul, Nicholas ; Rabaev, Moshe ; Vidruk-Nehemya, Roxana ; Yuen, Alexander KL</creatorcontrib><description>This article showcases a proof-of-concept in the production of high quality renewable biofuel from algae. Here, we introduce a path combining a number of approaches that, when integrated as a whole, create a process that takes algae grown in waste-water through to a liquid fuel containing fractions ready for blending with regular gasoline, jet fuel and diesel. With the overarching goal of reducing the nitrogen content invariably associated with whole algal biomass, we apply a number of approaches including (i) nutrient starvation to reduce the internal nitrogen of the freshwater alga Oedogonium(ii) continuous co-solvent (10 wt% n-heptane) hydrothermal liquefaction (HTL) to produce a non-polar biocrude containing <1 wt% N; (iii) blending the biocrude with green feed produced from the hydrogenation of CO sub(2) to obtain <0.5 wt% N; (iv) hydrogenation and hydro-isomerization of the blend in two stages over nanodisperse silica-supported Ni sub(2)P (achieving 630 ppm N) and acidic zeolite-supported Pt catalysts respectively to produce a synthetic paraffinic mixture (SPM) containing 277 ppm N and 0.12% O. With the incorporation of renewable H sub(2) (which can be from gasification of polar organics produced in the solvent HTL, or other renewable sources) and captured CO sub(2) the process demonstrates a new and technically cohesive approach to the production of renewable, high-quality biofuels for demanding transport applications.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c6ee00414h</identifier><language>eng</language><subject>Algae ; Biomass ; Blending ; Carbon capture and storage ; Carbon dioxide ; Fuels ; Hydrogenation ; Liquid fuels</subject><ispartof>Energy & environmental science, 2016-05, Vol.9 (5), p.1828-1840</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cole, Andrew</creatorcontrib><creatorcontrib>Dinburg, Yakov</creatorcontrib><creatorcontrib>Haynes, Brian S</creatorcontrib><creatorcontrib>He, Yaya</creatorcontrib><creatorcontrib>Herskowitz, Moti</creatorcontrib><creatorcontrib>Jazrawi, Christopher</creatorcontrib><creatorcontrib>Landau, Miron</creatorcontrib><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Magnusson, Marie</creatorcontrib><creatorcontrib>Maschmeyer, Thomas</creatorcontrib><creatorcontrib>Masters, Anthony F</creatorcontrib><creatorcontrib>Meiri, Nora</creatorcontrib><creatorcontrib>Neveux, Nicolas</creatorcontrib><creatorcontrib>de Nys, Rocky</creatorcontrib><creatorcontrib>Paul, Nicholas</creatorcontrib><creatorcontrib>Rabaev, Moshe</creatorcontrib><creatorcontrib>Vidruk-Nehemya, Roxana</creatorcontrib><creatorcontrib>Yuen, Alexander KL</creatorcontrib><title>From macroalgae to liquid fuel viawaste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating</title><title>Energy & environmental science</title><description>This article showcases a proof-of-concept in the production of high quality renewable biofuel from algae. Here, we introduce a path combining a number of approaches that, when integrated as a whole, create a process that takes algae grown in waste-water through to a liquid fuel containing fractions ready for blending with regular gasoline, jet fuel and diesel. With the overarching goal of reducing the nitrogen content invariably associated with whole algal biomass, we apply a number of approaches including (i) nutrient starvation to reduce the internal nitrogen of the freshwater alga Oedogonium(ii) continuous co-solvent (10 wt% n-heptane) hydrothermal liquefaction (HTL) to produce a non-polar biocrude containing <1 wt% N; (iii) blending the biocrude with green feed produced from the hydrogenation of CO sub(2) to obtain <0.5 wt% N; (iv) hydrogenation and hydro-isomerization of the blend in two stages over nanodisperse silica-supported Ni sub(2)P (achieving 630 ppm N) and acidic zeolite-supported Pt catalysts respectively to produce a synthetic paraffinic mixture (SPM) containing 277 ppm N and 0.12% O. With the incorporation of renewable H sub(2) (which can be from gasification of polar organics produced in the solvent HTL, or other renewable sources) and captured CO sub(2) the process demonstrates a new and technically cohesive approach to the production of renewable, high-quality biofuels for demanding transport applications.</description><subject>Algae</subject><subject>Biomass</subject><subject>Blending</subject><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Fuels</subject><subject>Hydrogenation</subject><subject>Liquid fuels</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFjT1PwzAYhC0EEqWw8As8MjTgr9jOiCoKSJVYuldv7DepURK3TkJh5J9T0TIz3en03B0ht5zdcyaLB6cRGVNcbc7IhJtcZblh-vzP60Jckqu-f2dMC2aKCflepNjSFlyK0NSAdIi0CbsxeFqN2NCPAHvoB8z2MGCiCVv0AYYQuxndfPkUhw2mFho6busEPnT1jDpIZeyoD_EzeDxiNXa_LQqdPxUTHpKuviYXFTQ93px0SlaLp9X8JVu-Pb_OH5fZVmuReWSc5-CkUJVRApjSVuel8SByx20h84qXHCX4UhWKWVNaVSlvsHJWovRySu6Os9sUdyP2w7oNvcOmgQ7j2K-55fpwYaX4HzUFKyQTuZU_nqlzfA</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Cole, Andrew</creator><creator>Dinburg, Yakov</creator><creator>Haynes, Brian S</creator><creator>He, Yaya</creator><creator>Herskowitz, Moti</creator><creator>Jazrawi, Christopher</creator><creator>Landau, Miron</creator><creator>Liang, Xiao</creator><creator>Magnusson, Marie</creator><creator>Maschmeyer, Thomas</creator><creator>Masters, Anthony F</creator><creator>Meiri, Nora</creator><creator>Neveux, Nicolas</creator><creator>de Nys, Rocky</creator><creator>Paul, Nicholas</creator><creator>Rabaev, Moshe</creator><creator>Vidruk-Nehemya, Roxana</creator><creator>Yuen, Alexander KL</creator><scope>7QO</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>L7M</scope></search><sort><creationdate>20160501</creationdate><title>From macroalgae to liquid fuel viawaste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating</title><author>Cole, Andrew ; Dinburg, Yakov ; Haynes, Brian S ; He, Yaya ; Herskowitz, Moti ; Jazrawi, Christopher ; Landau, Miron ; Liang, Xiao ; Magnusson, Marie ; Maschmeyer, Thomas ; Masters, Anthony F ; Meiri, Nora ; Neveux, Nicolas ; de Nys, Rocky ; Paul, Nicholas ; Rabaev, Moshe ; Vidruk-Nehemya, Roxana ; Yuen, Alexander KL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p662-de0115ac324f742a046865b7da25c18935f1b1e3adb494087b84f4d7efc83e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algae</topic><topic>Biomass</topic><topic>Blending</topic><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Fuels</topic><topic>Hydrogenation</topic><topic>Liquid fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cole, Andrew</creatorcontrib><creatorcontrib>Dinburg, Yakov</creatorcontrib><creatorcontrib>Haynes, Brian S</creatorcontrib><creatorcontrib>He, Yaya</creatorcontrib><creatorcontrib>Herskowitz, Moti</creatorcontrib><creatorcontrib>Jazrawi, Christopher</creatorcontrib><creatorcontrib>Landau, Miron</creatorcontrib><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Magnusson, Marie</creatorcontrib><creatorcontrib>Maschmeyer, Thomas</creatorcontrib><creatorcontrib>Masters, Anthony F</creatorcontrib><creatorcontrib>Meiri, Nora</creatorcontrib><creatorcontrib>Neveux, Nicolas</creatorcontrib><creatorcontrib>de Nys, Rocky</creatorcontrib><creatorcontrib>Paul, Nicholas</creatorcontrib><creatorcontrib>Rabaev, Moshe</creatorcontrib><creatorcontrib>Vidruk-Nehemya, Roxana</creatorcontrib><creatorcontrib>Yuen, Alexander KL</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cole, Andrew</au><au>Dinburg, Yakov</au><au>Haynes, Brian S</au><au>He, Yaya</au><au>Herskowitz, Moti</au><au>Jazrawi, Christopher</au><au>Landau, Miron</au><au>Liang, Xiao</au><au>Magnusson, Marie</au><au>Maschmeyer, Thomas</au><au>Masters, Anthony F</au><au>Meiri, Nora</au><au>Neveux, Nicolas</au><au>de Nys, Rocky</au><au>Paul, Nicholas</au><au>Rabaev, Moshe</au><au>Vidruk-Nehemya, Roxana</au><au>Yuen, Alexander KL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From macroalgae to liquid fuel viawaste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating</atitle><jtitle>Energy & environmental science</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>9</volume><issue>5</issue><spage>1828</spage><epage>1840</epage><pages>1828-1840</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>This article showcases a proof-of-concept in the production of high quality renewable biofuel from algae. Here, we introduce a path combining a number of approaches that, when integrated as a whole, create a process that takes algae grown in waste-water through to a liquid fuel containing fractions ready for blending with regular gasoline, jet fuel and diesel. With the overarching goal of reducing the nitrogen content invariably associated with whole algal biomass, we apply a number of approaches including (i) nutrient starvation to reduce the internal nitrogen of the freshwater alga Oedogonium(ii) continuous co-solvent (10 wt% n-heptane) hydrothermal liquefaction (HTL) to produce a non-polar biocrude containing <1 wt% N; (iii) blending the biocrude with green feed produced from the hydrogenation of CO sub(2) to obtain <0.5 wt% N; (iv) hydrogenation and hydro-isomerization of the blend in two stages over nanodisperse silica-supported Ni sub(2)P (achieving 630 ppm N) and acidic zeolite-supported Pt catalysts respectively to produce a synthetic paraffinic mixture (SPM) containing 277 ppm N and 0.12% O. With the incorporation of renewable H sub(2) (which can be from gasification of polar organics produced in the solvent HTL, or other renewable sources) and captured CO sub(2) the process demonstrates a new and technically cohesive approach to the production of renewable, high-quality biofuels for demanding transport applications.</abstract><doi>10.1039/c6ee00414h</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2016-05, Vol.9 (5), p.1828-1840 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816011832 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Algae Biomass Blending Carbon capture and storage Carbon dioxide Fuels Hydrogenation Liquid fuels |
title | From macroalgae to liquid fuel viawaste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20macroalgae%20to%20liquid%20fuel%20viawaste-water%20remediation,%20hydrothermal%20upgrading,%20carbon%20dioxide%20hydrogenation%20and%20hydrotreating&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Cole,%20Andrew&rft.date=2016-05-01&rft.volume=9&rft.issue=5&rft.spage=1828&rft.epage=1840&rft.pages=1828-1840&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c6ee00414h&rft_dat=%3Cproquest%3E1816011832%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790930258&rft_id=info:pmid/&rfr_iscdi=true |