Quantification of angiogenic sprouting under different growth factors in a microfluidic platform

Abstract Angiogenesis, as example of collective migration of endothelial cells (ECs), is the main dynamic process that culminates in sprout formation from existing vessels. After tissue injury, the vascularity is interrupted, triggering the regeneration process and the release of different growth fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2016-05, Vol.49 (8), p.1340-1346
Hauptverfasser: Del Amo, Cristina, Borau, Carlos, Gutiérrez, Raquel, Asín, Jesús, García-Aznar, José Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1346
container_issue 8
container_start_page 1340
container_title Journal of biomechanics
container_volume 49
creator Del Amo, Cristina
Borau, Carlos
Gutiérrez, Raquel
Asín, Jesús
García-Aznar, José Manuel
description Abstract Angiogenesis, as example of collective migration of endothelial cells (ECs), is the main dynamic process that culminates in sprout formation from existing vessels. After tissue injury, the vascularity is interrupted, triggering the regeneration process and the release of different growth factors (GFs). The main aim of this work is to quantify the effect of specific GFs during the initial stage of sprout formation, namely: VEGF, PDGF-BB, TGFβ and BMP-2, all of them involved in regenerative processes. For this purpose, we designed a novel algorithm implemented in Matlab to quantify the advance of the EC monolayer over time and the sprout structure in 3D. Our results show that VEGF is the main regulatory GF on angiogenesis processes, producing longer sprouts with higher frequency. However, the chemoattractant effect of VEGF depends on its concentration and its spatiotemporal location, having a critical impact on the sprout time evolution. PDGF-BB (namely as PDGF) has a global negative effect on both the number and length of sprouts. TGFβ enhances sprout length at earlier times, although its effect gradually disappears over time. Finally, BMP-2 produces, overall, less number and shorter sprouts, but was the only GF with a positive evolution at longer times, producing fewer but longer sprouts.
doi_str_mv 10.1016/j.jbiomech.2015.10.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816008287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929015005746</els_id><sourcerecordid>1816008287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-de57995b2add579132fcc4f23547ed882c0739343a1db167645f0a480d37ea53</originalsourceid><addsrcrecordid>eNqNkkFv1DAQhSMEotvCX6giceGSZWzHcXxBoAoKUiWE6N147fHWIbEXOwH13-NoW5B6KSdbo2-ePfNeVZ0T2BIg3ZthO-x8nNDcbCkQXopboN2TakN6wRrKenhabQAoaSSVcFKd5jwAgGiFfF6d0I7zThC-qb5_XXSYvfNGzz6GOrpah72Pewze1PmQ4jL7sK-XYDHV1juHCcNc71P8Pd_UTps5plz7UOt68iZFNy7eltbDqGcX0_Sieub0mPHl3XlWXX_8cH3xqbn6cvn54v1VYzoKc2ORCyn5jmpry40w6oxpHWW8FWj7nhoQTLKWaWJ3pBNdyx3otgfLBGrOzqrXR9ny458L5llNPhscRx0wLlmRnnQAPS3b-Q-USBAS2OOo6GUrBQco6KsH6BCXFMrIhZIAhEopC9UdqbKpnBM6dUh-0ulWEVCrsWpQ98aq1di1Xowtjed38stuQvu37d7JArw7AliW_MtjUtl4DAatT2hmZaN__I23DyTM6EsM9PgDbzH_m0dlqkB9W-O1pouU-bloO_YHDdrLmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790012999</pqid></control><display><type>article</type><title>Quantification of angiogenic sprouting under different growth factors in a microfluidic platform</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Del Amo, Cristina ; Borau, Carlos ; Gutiérrez, Raquel ; Asín, Jesús ; García-Aznar, José Manuel</creator><creatorcontrib>Del Amo, Cristina ; Borau, Carlos ; Gutiérrez, Raquel ; Asín, Jesús ; García-Aznar, José Manuel</creatorcontrib><description>Abstract Angiogenesis, as example of collective migration of endothelial cells (ECs), is the main dynamic process that culminates in sprout formation from existing vessels. After tissue injury, the vascularity is interrupted, triggering the regeneration process and the release of different growth factors (GFs). The main aim of this work is to quantify the effect of specific GFs during the initial stage of sprout formation, namely: VEGF, PDGF-BB, TGFβ and BMP-2, all of them involved in regenerative processes. For this purpose, we designed a novel algorithm implemented in Matlab to quantify the advance of the EC monolayer over time and the sprout structure in 3D. Our results show that VEGF is the main regulatory GF on angiogenesis processes, producing longer sprouts with higher frequency. However, the chemoattractant effect of VEGF depends on its concentration and its spatiotemporal location, having a critical impact on the sprout time evolution. PDGF-BB (namely as PDGF) has a global negative effect on both the number and length of sprouts. TGFβ enhances sprout length at earlier times, although its effect gradually disappears over time. Finally, BMP-2 produces, overall, less number and shorter sprouts, but was the only GF with a positive evolution at longer times, producing fewer but longer sprouts.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2015.10.026</identifier><identifier>PMID: 26556715</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Angiogenesis ; Bone Morphogenetic Protein 2 - physiology ; Cell culture ; Cell growth ; Collagen ; Collective Cell Migration ; Evolution ; Formations ; Growth factors ; Human Umbilical Vein Endothelial Cells - physiology ; Humans ; Hydrogels ; Matlab ; Microfluidics ; Molecular weight ; Neovascularization, Physiologic ; Permeability ; Physical Medicine and Rehabilitation ; Platelet-Derived Growth Factor - physiology ; Proteins ; Regenerative ; Sprouting ; Three dimensional ; Transforming Growth Factor beta - physiology ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - physiology</subject><ispartof>Journal of biomechanics, 2016-05, Vol.49 (8), p.1340-1346</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-de57995b2add579132fcc4f23547ed882c0739343a1db167645f0a480d37ea53</citedby><cites>FETCH-LOGICAL-c620t-de57995b2add579132fcc4f23547ed882c0739343a1db167645f0a480d37ea53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1790012999?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26556715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Del Amo, Cristina</creatorcontrib><creatorcontrib>Borau, Carlos</creatorcontrib><creatorcontrib>Gutiérrez, Raquel</creatorcontrib><creatorcontrib>Asín, Jesús</creatorcontrib><creatorcontrib>García-Aznar, José Manuel</creatorcontrib><title>Quantification of angiogenic sprouting under different growth factors in a microfluidic platform</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Angiogenesis, as example of collective migration of endothelial cells (ECs), is the main dynamic process that culminates in sprout formation from existing vessels. After tissue injury, the vascularity is interrupted, triggering the regeneration process and the release of different growth factors (GFs). The main aim of this work is to quantify the effect of specific GFs during the initial stage of sprout formation, namely: VEGF, PDGF-BB, TGFβ and BMP-2, all of them involved in regenerative processes. For this purpose, we designed a novel algorithm implemented in Matlab to quantify the advance of the EC monolayer over time and the sprout structure in 3D. Our results show that VEGF is the main regulatory GF on angiogenesis processes, producing longer sprouts with higher frequency. However, the chemoattractant effect of VEGF depends on its concentration and its spatiotemporal location, having a critical impact on the sprout time evolution. PDGF-BB (namely as PDGF) has a global negative effect on both the number and length of sprouts. TGFβ enhances sprout length at earlier times, although its effect gradually disappears over time. Finally, BMP-2 produces, overall, less number and shorter sprouts, but was the only GF with a positive evolution at longer times, producing fewer but longer sprouts.</description><subject>Algorithms</subject><subject>Angiogenesis</subject><subject>Bone Morphogenetic Protein 2 - physiology</subject><subject>Cell culture</subject><subject>Cell growth</subject><subject>Collagen</subject><subject>Collective Cell Migration</subject><subject>Evolution</subject><subject>Formations</subject><subject>Growth factors</subject><subject>Human Umbilical Vein Endothelial Cells - physiology</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Matlab</subject><subject>Microfluidics</subject><subject>Molecular weight</subject><subject>Neovascularization, Physiologic</subject><subject>Permeability</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Platelet-Derived Growth Factor - physiology</subject><subject>Proteins</subject><subject>Regenerative</subject><subject>Sprouting</subject><subject>Three dimensional</subject><subject>Transforming Growth Factor beta - physiology</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - physiology</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkkFv1DAQhSMEotvCX6giceGSZWzHcXxBoAoKUiWE6N147fHWIbEXOwH13-NoW5B6KSdbo2-ePfNeVZ0T2BIg3ZthO-x8nNDcbCkQXopboN2TakN6wRrKenhabQAoaSSVcFKd5jwAgGiFfF6d0I7zThC-qb5_XXSYvfNGzz6GOrpah72Pewze1PmQ4jL7sK-XYDHV1juHCcNc71P8Pd_UTps5plz7UOt68iZFNy7eltbDqGcX0_Sieub0mPHl3XlWXX_8cH3xqbn6cvn54v1VYzoKc2ORCyn5jmpry40w6oxpHWW8FWj7nhoQTLKWaWJ3pBNdyx3otgfLBGrOzqrXR9ny458L5llNPhscRx0wLlmRnnQAPS3b-Q-USBAS2OOo6GUrBQco6KsH6BCXFMrIhZIAhEopC9UdqbKpnBM6dUh-0ulWEVCrsWpQ98aq1di1Xowtjed38stuQvu37d7JArw7AliW_MtjUtl4DAatT2hmZaN__I23DyTM6EsM9PgDbzH_m0dlqkB9W-O1pouU-bloO_YHDdrLmQ</recordid><startdate>20160524</startdate><enddate>20160524</enddate><creator>Del Amo, Cristina</creator><creator>Borau, Carlos</creator><creator>Gutiérrez, Raquel</creator><creator>Asín, Jesús</creator><creator>García-Aznar, José Manuel</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20160524</creationdate><title>Quantification of angiogenic sprouting under different growth factors in a microfluidic platform</title><author>Del Amo, Cristina ; Borau, Carlos ; Gutiérrez, Raquel ; Asín, Jesús ; García-Aznar, José Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-de57995b2add579132fcc4f23547ed882c0739343a1db167645f0a480d37ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Angiogenesis</topic><topic>Bone Morphogenetic Protein 2 - physiology</topic><topic>Cell culture</topic><topic>Cell growth</topic><topic>Collagen</topic><topic>Collective Cell Migration</topic><topic>Evolution</topic><topic>Formations</topic><topic>Growth factors</topic><topic>Human Umbilical Vein Endothelial Cells - physiology</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Matlab</topic><topic>Microfluidics</topic><topic>Molecular weight</topic><topic>Neovascularization, Physiologic</topic><topic>Permeability</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Platelet-Derived Growth Factor - physiology</topic><topic>Proteins</topic><topic>Regenerative</topic><topic>Sprouting</topic><topic>Three dimensional</topic><topic>Transforming Growth Factor beta - physiology</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Del Amo, Cristina</creatorcontrib><creatorcontrib>Borau, Carlos</creatorcontrib><creatorcontrib>Gutiérrez, Raquel</creatorcontrib><creatorcontrib>Asín, Jesús</creatorcontrib><creatorcontrib>García-Aznar, José Manuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Del Amo, Cristina</au><au>Borau, Carlos</au><au>Gutiérrez, Raquel</au><au>Asín, Jesús</au><au>García-Aznar, José Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of angiogenic sprouting under different growth factors in a microfluidic platform</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2016-05-24</date><risdate>2016</risdate><volume>49</volume><issue>8</issue><spage>1340</spage><epage>1346</epage><pages>1340-1346</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Angiogenesis, as example of collective migration of endothelial cells (ECs), is the main dynamic process that culminates in sprout formation from existing vessels. After tissue injury, the vascularity is interrupted, triggering the regeneration process and the release of different growth factors (GFs). The main aim of this work is to quantify the effect of specific GFs during the initial stage of sprout formation, namely: VEGF, PDGF-BB, TGFβ and BMP-2, all of them involved in regenerative processes. For this purpose, we designed a novel algorithm implemented in Matlab to quantify the advance of the EC monolayer over time and the sprout structure in 3D. Our results show that VEGF is the main regulatory GF on angiogenesis processes, producing longer sprouts with higher frequency. However, the chemoattractant effect of VEGF depends on its concentration and its spatiotemporal location, having a critical impact on the sprout time evolution. PDGF-BB (namely as PDGF) has a global negative effect on both the number and length of sprouts. TGFβ enhances sprout length at earlier times, although its effect gradually disappears over time. Finally, BMP-2 produces, overall, less number and shorter sprouts, but was the only GF with a positive evolution at longer times, producing fewer but longer sprouts.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>26556715</pmid><doi>10.1016/j.jbiomech.2015.10.026</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2016-05, Vol.49 (8), p.1340-1346
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_1816008287
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Algorithms
Angiogenesis
Bone Morphogenetic Protein 2 - physiology
Cell culture
Cell growth
Collagen
Collective Cell Migration
Evolution
Formations
Growth factors
Human Umbilical Vein Endothelial Cells - physiology
Humans
Hydrogels
Matlab
Microfluidics
Molecular weight
Neovascularization, Physiologic
Permeability
Physical Medicine and Rehabilitation
Platelet-Derived Growth Factor - physiology
Proteins
Regenerative
Sprouting
Three dimensional
Transforming Growth Factor beta - physiology
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - physiology
title Quantification of angiogenic sprouting under different growth factors in a microfluidic platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T17%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20angiogenic%20sprouting%20under%20different%20growth%20factors%20in%20a%20microfluidic%20platform&rft.jtitle=Journal%20of%20biomechanics&rft.au=Del%20Amo,%20Cristina&rft.date=2016-05-24&rft.volume=49&rft.issue=8&rft.spage=1340&rft.epage=1346&rft.pages=1340-1346&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2015.10.026&rft_dat=%3Cproquest_cross%3E1816008287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790012999&rft_id=info:pmid/26556715&rft_els_id=1_s2_0_S0021929015005746&rfr_iscdi=true