Tri-layered graphite foil for electrochemical capacitors
Free-standing carbon structures are promising electrode materials for electrochemical capacitors. However, these electrodes usually have small mass that limits the amount of energy that can be stored. Increasing the electrode mass typically leads to reduction of gravimetric capacitance and rate capa...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2016-01, Vol.4 (2), p.7683-7688 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7688 |
---|---|
container_issue | 2 |
container_start_page | 7683 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 4 |
creator | Song, Yu Liu, Tian-Yu Xu, Guo-Liang Feng, Dong-Yang Yao, Bin Kou, Tian-Yi Liu, Xiao-Xia Li, Yat |
description | Free-standing carbon structures are promising electrode materials for electrochemical capacitors. However, these electrodes usually have small mass that limits the amount of energy that can be stored. Increasing the electrode mass typically leads to reduction of gravimetric capacitance and rate capability due to the sluggish mass transfer kinetics and increased internal resistance. It has been a challenge to improve both specific capacitance and rate capability of an electrode with high mass. Here we demonstrate a new method to convert graphite foil (8.5 mg cm
−2
) with a compact layered structure into a unique tri-layered structure that consists of a top layer of partially exfoliated graphene sheets, a middle layer of intercalated graphite sheets and a bottom layer of graphite. This unique structure shows enhanced ion accessible surface area and pseudocapacitance. The seamless connection between the three layers ensures efficient electron transport across the electrode. The tri-layered graphite foil electrode delivers an excellent capacitance of 820 mF cm
−2
at 5 mA cm
−2
(corresponding to 96.5 F g
−1
), which is 400 times higher than the untreated foil. Moreover, it retains 75% capacitance when the current density is increased from 5 to 100 mA cm
−2
. These values are among the best values reported for carbon-based electrodes with comparable mass.
This work demonstrates an electrochemical method combining ion-intercalation and oxidation to synthesize tri-layered graphite foils with superior capacitive performance. |
doi_str_mv | 10.1039/c6ta02075e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816005915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816005915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-7911476318213d596bba3e9d0de359225dc873e83379e51df402ab4799a970ba3</originalsourceid><addsrcrecordid>eNpF0D1PwzAQBmALgURVurAjZURIgXMcf9xYReVDqsQS5sh1LtTIJcFOh_57AkXlhrt3eHTDy9g1h3sOAh-cGi0UoCWdsVkBEnJdojo_ZWMu2SKlD5jGACjEGTN19HmwB4rUZu_RDls_Utb1PkwrZhTIjbF3W9p5Z0Pm7GCdH_uYrthFZ0Oixd-ds7fHVV095-vXp5dquc6dQDHmGjkvtRLcFFy0EtVmYwVhCy0JiUUhW2e0ICOERpK87Uoo7KbUiBY1THbObo9_h9h_7SmNzc4nRyHYT-r3qeGGKwCJXE707khd7FOK1DVD9DsbDw2H5qehplL18reh1YRvjjgmd3L_DYpvUqRg-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816005915</pqid></control><display><type>article</type><title>Tri-layered graphite foil for electrochemical capacitors</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Song, Yu ; Liu, Tian-Yu ; Xu, Guo-Liang ; Feng, Dong-Yang ; Yao, Bin ; Kou, Tian-Yi ; Liu, Xiao-Xia ; Li, Yat</creator><creatorcontrib>Song, Yu ; Liu, Tian-Yu ; Xu, Guo-Liang ; Feng, Dong-Yang ; Yao, Bin ; Kou, Tian-Yi ; Liu, Xiao-Xia ; Li, Yat</creatorcontrib><description>Free-standing carbon structures are promising electrode materials for electrochemical capacitors. However, these electrodes usually have small mass that limits the amount of energy that can be stored. Increasing the electrode mass typically leads to reduction of gravimetric capacitance and rate capability due to the sluggish mass transfer kinetics and increased internal resistance. It has been a challenge to improve both specific capacitance and rate capability of an electrode with high mass. Here we demonstrate a new method to convert graphite foil (8.5 mg cm
−2
) with a compact layered structure into a unique tri-layered structure that consists of a top layer of partially exfoliated graphene sheets, a middle layer of intercalated graphite sheets and a bottom layer of graphite. This unique structure shows enhanced ion accessible surface area and pseudocapacitance. The seamless connection between the three layers ensures efficient electron transport across the electrode. The tri-layered graphite foil electrode delivers an excellent capacitance of 820 mF cm
−2
at 5 mA cm
−2
(corresponding to 96.5 F g
−1
), which is 400 times higher than the untreated foil. Moreover, it retains 75% capacitance when the current density is increased from 5 to 100 mA cm
−2
. These values are among the best values reported for carbon-based electrodes with comparable mass.
This work demonstrates an electrochemical method combining ion-intercalation and oxidation to synthesize tri-layered graphite foils with superior capacitive performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c6ta02075e</identifier><language>eng</language><subject>Accessibility ; Capacitance ; Capacitors ; Carbon ; Electrodes ; Foils (structural shapes) ; Graphene ; Graphite</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2016-01, Vol.4 (2), p.7683-7688</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-7911476318213d596bba3e9d0de359225dc873e83379e51df402ab4799a970ba3</citedby><cites>FETCH-LOGICAL-c393t-7911476318213d596bba3e9d0de359225dc873e83379e51df402ab4799a970ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Liu, Tian-Yu</creatorcontrib><creatorcontrib>Xu, Guo-Liang</creatorcontrib><creatorcontrib>Feng, Dong-Yang</creatorcontrib><creatorcontrib>Yao, Bin</creatorcontrib><creatorcontrib>Kou, Tian-Yi</creatorcontrib><creatorcontrib>Liu, Xiao-Xia</creatorcontrib><creatorcontrib>Li, Yat</creatorcontrib><title>Tri-layered graphite foil for electrochemical capacitors</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Free-standing carbon structures are promising electrode materials for electrochemical capacitors. However, these electrodes usually have small mass that limits the amount of energy that can be stored. Increasing the electrode mass typically leads to reduction of gravimetric capacitance and rate capability due to the sluggish mass transfer kinetics and increased internal resistance. It has been a challenge to improve both specific capacitance and rate capability of an electrode with high mass. Here we demonstrate a new method to convert graphite foil (8.5 mg cm
−2
) with a compact layered structure into a unique tri-layered structure that consists of a top layer of partially exfoliated graphene sheets, a middle layer of intercalated graphite sheets and a bottom layer of graphite. This unique structure shows enhanced ion accessible surface area and pseudocapacitance. The seamless connection between the three layers ensures efficient electron transport across the electrode. The tri-layered graphite foil electrode delivers an excellent capacitance of 820 mF cm
−2
at 5 mA cm
−2
(corresponding to 96.5 F g
−1
), which is 400 times higher than the untreated foil. Moreover, it retains 75% capacitance when the current density is increased from 5 to 100 mA cm
−2
. These values are among the best values reported for carbon-based electrodes with comparable mass.
This work demonstrates an electrochemical method combining ion-intercalation and oxidation to synthesize tri-layered graphite foils with superior capacitive performance.</description><subject>Accessibility</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Electrodes</subject><subject>Foils (structural shapes)</subject><subject>Graphene</subject><subject>Graphite</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpF0D1PwzAQBmALgURVurAjZURIgXMcf9xYReVDqsQS5sh1LtTIJcFOh_57AkXlhrt3eHTDy9g1h3sOAh-cGi0UoCWdsVkBEnJdojo_ZWMu2SKlD5jGACjEGTN19HmwB4rUZu_RDls_Utb1PkwrZhTIjbF3W9p5Z0Pm7GCdH_uYrthFZ0Oixd-ds7fHVV095-vXp5dquc6dQDHmGjkvtRLcFFy0EtVmYwVhCy0JiUUhW2e0ICOERpK87Uoo7KbUiBY1THbObo9_h9h_7SmNzc4nRyHYT-r3qeGGKwCJXE707khd7FOK1DVD9DsbDw2H5qehplL18reh1YRvjjgmd3L_DYpvUqRg-Q</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Song, Yu</creator><creator>Liu, Tian-Yu</creator><creator>Xu, Guo-Liang</creator><creator>Feng, Dong-Yang</creator><creator>Yao, Bin</creator><creator>Kou, Tian-Yi</creator><creator>Liu, Xiao-Xia</creator><creator>Li, Yat</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Tri-layered graphite foil for electrochemical capacitors</title><author>Song, Yu ; Liu, Tian-Yu ; Xu, Guo-Liang ; Feng, Dong-Yang ; Yao, Bin ; Kou, Tian-Yi ; Liu, Xiao-Xia ; Li, Yat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-7911476318213d596bba3e9d0de359225dc873e83379e51df402ab4799a970ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accessibility</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Electrodes</topic><topic>Foils (structural shapes)</topic><topic>Graphene</topic><topic>Graphite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Liu, Tian-Yu</creatorcontrib><creatorcontrib>Xu, Guo-Liang</creatorcontrib><creatorcontrib>Feng, Dong-Yang</creatorcontrib><creatorcontrib>Yao, Bin</creatorcontrib><creatorcontrib>Kou, Tian-Yi</creatorcontrib><creatorcontrib>Liu, Xiao-Xia</creatorcontrib><creatorcontrib>Li, Yat</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yu</au><au>Liu, Tian-Yu</au><au>Xu, Guo-Liang</au><au>Feng, Dong-Yang</au><au>Yao, Bin</au><au>Kou, Tian-Yi</au><au>Liu, Xiao-Xia</au><au>Li, Yat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tri-layered graphite foil for electrochemical capacitors</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>4</volume><issue>2</issue><spage>7683</spage><epage>7688</epage><pages>7683-7688</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Free-standing carbon structures are promising electrode materials for electrochemical capacitors. However, these electrodes usually have small mass that limits the amount of energy that can be stored. Increasing the electrode mass typically leads to reduction of gravimetric capacitance and rate capability due to the sluggish mass transfer kinetics and increased internal resistance. It has been a challenge to improve both specific capacitance and rate capability of an electrode with high mass. Here we demonstrate a new method to convert graphite foil (8.5 mg cm
−2
) with a compact layered structure into a unique tri-layered structure that consists of a top layer of partially exfoliated graphene sheets, a middle layer of intercalated graphite sheets and a bottom layer of graphite. This unique structure shows enhanced ion accessible surface area and pseudocapacitance. The seamless connection between the three layers ensures efficient electron transport across the electrode. The tri-layered graphite foil electrode delivers an excellent capacitance of 820 mF cm
−2
at 5 mA cm
−2
(corresponding to 96.5 F g
−1
), which is 400 times higher than the untreated foil. Moreover, it retains 75% capacitance when the current density is increased from 5 to 100 mA cm
−2
. These values are among the best values reported for carbon-based electrodes with comparable mass.
This work demonstrates an electrochemical method combining ion-intercalation and oxidation to synthesize tri-layered graphite foils with superior capacitive performance.</abstract><doi>10.1039/c6ta02075e</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2016-01, Vol.4 (2), p.7683-7688 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816005915 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Accessibility Capacitance Capacitors Carbon Electrodes Foils (structural shapes) Graphene Graphite |
title | Tri-layered graphite foil for electrochemical capacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tri-layered%20graphite%20foil%20for%20electrochemical%20capacitors&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Song,%20Yu&rft.date=2016-01-01&rft.volume=4&rft.issue=2&rft.spage=7683&rft.epage=7688&rft.pages=7683-7688&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c6ta02075e&rft_dat=%3Cproquest_cross%3E1816005915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816005915&rft_id=info:pmid/&rfr_iscdi=true |