Tri-layered graphite foil for electrochemical capacitors

Free-standing carbon structures are promising electrode materials for electrochemical capacitors. However, these electrodes usually have small mass that limits the amount of energy that can be stored. Increasing the electrode mass typically leads to reduction of gravimetric capacitance and rate capa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2016-01, Vol.4 (2), p.7683-7688
Hauptverfasser: Song, Yu, Liu, Tian-Yu, Xu, Guo-Liang, Feng, Dong-Yang, Yao, Bin, Kou, Tian-Yi, Liu, Xiao-Xia, Li, Yat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7688
container_issue 2
container_start_page 7683
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 4
creator Song, Yu
Liu, Tian-Yu
Xu, Guo-Liang
Feng, Dong-Yang
Yao, Bin
Kou, Tian-Yi
Liu, Xiao-Xia
Li, Yat
description Free-standing carbon structures are promising electrode materials for electrochemical capacitors. However, these electrodes usually have small mass that limits the amount of energy that can be stored. Increasing the electrode mass typically leads to reduction of gravimetric capacitance and rate capability due to the sluggish mass transfer kinetics and increased internal resistance. It has been a challenge to improve both specific capacitance and rate capability of an electrode with high mass. Here we demonstrate a new method to convert graphite foil (8.5 mg cm −2 ) with a compact layered structure into a unique tri-layered structure that consists of a top layer of partially exfoliated graphene sheets, a middle layer of intercalated graphite sheets and a bottom layer of graphite. This unique structure shows enhanced ion accessible surface area and pseudocapacitance. The seamless connection between the three layers ensures efficient electron transport across the electrode. The tri-layered graphite foil electrode delivers an excellent capacitance of 820 mF cm −2 at 5 mA cm −2 (corresponding to 96.5 F g −1 ), which is 400 times higher than the untreated foil. Moreover, it retains 75% capacitance when the current density is increased from 5 to 100 mA cm −2 . These values are among the best values reported for carbon-based electrodes with comparable mass. This work demonstrates an electrochemical method combining ion-intercalation and oxidation to synthesize tri-layered graphite foils with superior capacitive performance.
doi_str_mv 10.1039/c6ta02075e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816005915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816005915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-7911476318213d596bba3e9d0de359225dc873e83379e51df402ab4799a970ba3</originalsourceid><addsrcrecordid>eNpF0D1PwzAQBmALgURVurAjZURIgXMcf9xYReVDqsQS5sh1LtTIJcFOh_57AkXlhrt3eHTDy9g1h3sOAh-cGi0UoCWdsVkBEnJdojo_ZWMu2SKlD5jGACjEGTN19HmwB4rUZu_RDls_Utb1PkwrZhTIjbF3W9p5Z0Pm7GCdH_uYrthFZ0Oixd-ds7fHVV095-vXp5dquc6dQDHmGjkvtRLcFFy0EtVmYwVhCy0JiUUhW2e0ICOERpK87Uoo7KbUiBY1THbObo9_h9h_7SmNzc4nRyHYT-r3qeGGKwCJXE707khd7FOK1DVD9DsbDw2H5qehplL18reh1YRvjjgmd3L_DYpvUqRg-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816005915</pqid></control><display><type>article</type><title>Tri-layered graphite foil for electrochemical capacitors</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Song, Yu ; Liu, Tian-Yu ; Xu, Guo-Liang ; Feng, Dong-Yang ; Yao, Bin ; Kou, Tian-Yi ; Liu, Xiao-Xia ; Li, Yat</creator><creatorcontrib>Song, Yu ; Liu, Tian-Yu ; Xu, Guo-Liang ; Feng, Dong-Yang ; Yao, Bin ; Kou, Tian-Yi ; Liu, Xiao-Xia ; Li, Yat</creatorcontrib><description>Free-standing carbon structures are promising electrode materials for electrochemical capacitors. However, these electrodes usually have small mass that limits the amount of energy that can be stored. Increasing the electrode mass typically leads to reduction of gravimetric capacitance and rate capability due to the sluggish mass transfer kinetics and increased internal resistance. It has been a challenge to improve both specific capacitance and rate capability of an electrode with high mass. Here we demonstrate a new method to convert graphite foil (8.5 mg cm −2 ) with a compact layered structure into a unique tri-layered structure that consists of a top layer of partially exfoliated graphene sheets, a middle layer of intercalated graphite sheets and a bottom layer of graphite. This unique structure shows enhanced ion accessible surface area and pseudocapacitance. The seamless connection between the three layers ensures efficient electron transport across the electrode. The tri-layered graphite foil electrode delivers an excellent capacitance of 820 mF cm −2 at 5 mA cm −2 (corresponding to 96.5 F g −1 ), which is 400 times higher than the untreated foil. Moreover, it retains 75% capacitance when the current density is increased from 5 to 100 mA cm −2 . These values are among the best values reported for carbon-based electrodes with comparable mass. This work demonstrates an electrochemical method combining ion-intercalation and oxidation to synthesize tri-layered graphite foils with superior capacitive performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c6ta02075e</identifier><language>eng</language><subject>Accessibility ; Capacitance ; Capacitors ; Carbon ; Electrodes ; Foils (structural shapes) ; Graphene ; Graphite</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2016-01, Vol.4 (2), p.7683-7688</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-7911476318213d596bba3e9d0de359225dc873e83379e51df402ab4799a970ba3</citedby><cites>FETCH-LOGICAL-c393t-7911476318213d596bba3e9d0de359225dc873e83379e51df402ab4799a970ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Liu, Tian-Yu</creatorcontrib><creatorcontrib>Xu, Guo-Liang</creatorcontrib><creatorcontrib>Feng, Dong-Yang</creatorcontrib><creatorcontrib>Yao, Bin</creatorcontrib><creatorcontrib>Kou, Tian-Yi</creatorcontrib><creatorcontrib>Liu, Xiao-Xia</creatorcontrib><creatorcontrib>Li, Yat</creatorcontrib><title>Tri-layered graphite foil for electrochemical capacitors</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Free-standing carbon structures are promising electrode materials for electrochemical capacitors. However, these electrodes usually have small mass that limits the amount of energy that can be stored. Increasing the electrode mass typically leads to reduction of gravimetric capacitance and rate capability due to the sluggish mass transfer kinetics and increased internal resistance. It has been a challenge to improve both specific capacitance and rate capability of an electrode with high mass. Here we demonstrate a new method to convert graphite foil (8.5 mg cm −2 ) with a compact layered structure into a unique tri-layered structure that consists of a top layer of partially exfoliated graphene sheets, a middle layer of intercalated graphite sheets and a bottom layer of graphite. This unique structure shows enhanced ion accessible surface area and pseudocapacitance. The seamless connection between the three layers ensures efficient electron transport across the electrode. The tri-layered graphite foil electrode delivers an excellent capacitance of 820 mF cm −2 at 5 mA cm −2 (corresponding to 96.5 F g −1 ), which is 400 times higher than the untreated foil. Moreover, it retains 75% capacitance when the current density is increased from 5 to 100 mA cm −2 . These values are among the best values reported for carbon-based electrodes with comparable mass. This work demonstrates an electrochemical method combining ion-intercalation and oxidation to synthesize tri-layered graphite foils with superior capacitive performance.</description><subject>Accessibility</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Electrodes</subject><subject>Foils (structural shapes)</subject><subject>Graphene</subject><subject>Graphite</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpF0D1PwzAQBmALgURVurAjZURIgXMcf9xYReVDqsQS5sh1LtTIJcFOh_57AkXlhrt3eHTDy9g1h3sOAh-cGi0UoCWdsVkBEnJdojo_ZWMu2SKlD5jGACjEGTN19HmwB4rUZu_RDls_Utb1PkwrZhTIjbF3W9p5Z0Pm7GCdH_uYrthFZ0Oixd-ds7fHVV095-vXp5dquc6dQDHmGjkvtRLcFFy0EtVmYwVhCy0JiUUhW2e0ICOERpK87Uoo7KbUiBY1THbObo9_h9h_7SmNzc4nRyHYT-r3qeGGKwCJXE707khd7FOK1DVD9DsbDw2H5qehplL18reh1YRvjjgmd3L_DYpvUqRg-Q</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Song, Yu</creator><creator>Liu, Tian-Yu</creator><creator>Xu, Guo-Liang</creator><creator>Feng, Dong-Yang</creator><creator>Yao, Bin</creator><creator>Kou, Tian-Yi</creator><creator>Liu, Xiao-Xia</creator><creator>Li, Yat</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Tri-layered graphite foil for electrochemical capacitors</title><author>Song, Yu ; Liu, Tian-Yu ; Xu, Guo-Liang ; Feng, Dong-Yang ; Yao, Bin ; Kou, Tian-Yi ; Liu, Xiao-Xia ; Li, Yat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-7911476318213d596bba3e9d0de359225dc873e83379e51df402ab4799a970ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accessibility</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Electrodes</topic><topic>Foils (structural shapes)</topic><topic>Graphene</topic><topic>Graphite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Liu, Tian-Yu</creatorcontrib><creatorcontrib>Xu, Guo-Liang</creatorcontrib><creatorcontrib>Feng, Dong-Yang</creatorcontrib><creatorcontrib>Yao, Bin</creatorcontrib><creatorcontrib>Kou, Tian-Yi</creatorcontrib><creatorcontrib>Liu, Xiao-Xia</creatorcontrib><creatorcontrib>Li, Yat</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yu</au><au>Liu, Tian-Yu</au><au>Xu, Guo-Liang</au><au>Feng, Dong-Yang</au><au>Yao, Bin</au><au>Kou, Tian-Yi</au><au>Liu, Xiao-Xia</au><au>Li, Yat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tri-layered graphite foil for electrochemical capacitors</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>4</volume><issue>2</issue><spage>7683</spage><epage>7688</epage><pages>7683-7688</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Free-standing carbon structures are promising electrode materials for electrochemical capacitors. However, these electrodes usually have small mass that limits the amount of energy that can be stored. Increasing the electrode mass typically leads to reduction of gravimetric capacitance and rate capability due to the sluggish mass transfer kinetics and increased internal resistance. It has been a challenge to improve both specific capacitance and rate capability of an electrode with high mass. Here we demonstrate a new method to convert graphite foil (8.5 mg cm −2 ) with a compact layered structure into a unique tri-layered structure that consists of a top layer of partially exfoliated graphene sheets, a middle layer of intercalated graphite sheets and a bottom layer of graphite. This unique structure shows enhanced ion accessible surface area and pseudocapacitance. The seamless connection between the three layers ensures efficient electron transport across the electrode. The tri-layered graphite foil electrode delivers an excellent capacitance of 820 mF cm −2 at 5 mA cm −2 (corresponding to 96.5 F g −1 ), which is 400 times higher than the untreated foil. Moreover, it retains 75% capacitance when the current density is increased from 5 to 100 mA cm −2 . These values are among the best values reported for carbon-based electrodes with comparable mass. This work demonstrates an electrochemical method combining ion-intercalation and oxidation to synthesize tri-layered graphite foils with superior capacitive performance.</abstract><doi>10.1039/c6ta02075e</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2016-01, Vol.4 (2), p.7683-7688
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_miscellaneous_1816005915
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Accessibility
Capacitance
Capacitors
Carbon
Electrodes
Foils (structural shapes)
Graphene
Graphite
title Tri-layered graphite foil for electrochemical capacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tri-layered%20graphite%20foil%20for%20electrochemical%20capacitors&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Song,%20Yu&rft.date=2016-01-01&rft.volume=4&rft.issue=2&rft.spage=7683&rft.epage=7688&rft.pages=7683-7688&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c6ta02075e&rft_dat=%3Cproquest_cross%3E1816005915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816005915&rft_id=info:pmid/&rfr_iscdi=true