Natural cutoffs via compact symplectic manifolds
In the context of phenomenological models of quantum gravity, it is claimed that ultraviolet (UV) and infrared (IR) natural cutoffs can be realized from local deformations of the Hamiltonian systems. In this paper, we scrutinize this hypothesis and formulate a cutoff-regularized Hamiltonian system....
Gespeichert in:
Veröffentlicht in: | Classical and quantum gravity 2016-01, Vol.33 (2), p.25009-25029 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25029 |
---|---|
container_issue | 2 |
container_start_page | 25009 |
container_title | Classical and quantum gravity |
container_volume | 33 |
creator | Nozari, K Gorji, M A Hosseinzadeh, V Vakili, B |
description | In the context of phenomenological models of quantum gravity, it is claimed that ultraviolet (UV) and infrared (IR) natural cutoffs can be realized from local deformations of the Hamiltonian systems. In this paper, we scrutinize this hypothesis and formulate a cutoff-regularized Hamiltonian system. The results show that while local deformations are necessary to have cutoffs, they are not sufficient. In fact, the cutoffs can be realized from globally-deformed Hamiltonian systems that are defined on compact symplectic manifolds. By taking the universality of quantum gravity effects into account, we then conclude that quantum gravity cutoffs are global (topological) properties of the symplectic manifolds. We justify our results by considering three well-known examples: the Moyal, Snyder and polymer-deformed Hamiltonian systems. |
doi_str_mv | 10.1088/0264-9381/33/2/025009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816000457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816000457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-777e5374074aec6f108c7f7fd5968c635e6dc7277ffe785447a979242e736b8f3</originalsourceid><addsrcrecordid>eNqFkE9LxDAUxIMoWFc_gtCjl7ovf196lEVdYdGLnkPMJtClbWrSCvvt7VLx6unx4DfDzBByS-GegtZrYEpUNdd0zfmaza8EqM9IQbmileKanZPij7kkVzkfACjVlBUEXu04JduWbhpjCLn8bmzpYjdYN5b52A2td2Pjys72TYjtPl-Ti2Db7G9-74p8PD2-b7bV7u35ZfOwqxxneqwQ0UuOAlBY71SYgzoMGPayVtopLr3aO2SIIXjUUgi0NdZMMI9cferAV-Ru8R1S_Jp8Hk3XZOfb1vY-TtnM8RUACIkzKhfUpZhz8sEMqelsOhoK5rSQObU3p_aGc8PMstCso4uuiYM5xCn1c6F_ND8DJGZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816000457</pqid></control><display><type>article</type><title>Natural cutoffs via compact symplectic manifolds</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Nozari, K ; Gorji, M A ; Hosseinzadeh, V ; Vakili, B</creator><creatorcontrib>Nozari, K ; Gorji, M A ; Hosseinzadeh, V ; Vakili, B</creatorcontrib><description>In the context of phenomenological models of quantum gravity, it is claimed that ultraviolet (UV) and infrared (IR) natural cutoffs can be realized from local deformations of the Hamiltonian systems. In this paper, we scrutinize this hypothesis and formulate a cutoff-regularized Hamiltonian system. The results show that while local deformations are necessary to have cutoffs, they are not sufficient. In fact, the cutoffs can be realized from globally-deformed Hamiltonian systems that are defined on compact symplectic manifolds. By taking the universality of quantum gravity effects into account, we then conclude that quantum gravity cutoffs are global (topological) properties of the symplectic manifolds. We justify our results by considering three well-known examples: the Moyal, Snyder and polymer-deformed Hamiltonian systems.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/33/2/025009</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Deformation ; Hamiltonian functions ; Infrared ; Manifolds ; Manifolds (mathematics) ; natural cutoffs ; Quantum gravity ; symplectic manifold ; Topology ; Ultraviolet</subject><ispartof>Classical and quantum gravity, 2016-01, Vol.33 (2), p.25009-25029</ispartof><rights>2016 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-777e5374074aec6f108c7f7fd5968c635e6dc7277ffe785447a979242e736b8f3</citedby><cites>FETCH-LOGICAL-c328t-777e5374074aec6f108c7f7fd5968c635e6dc7277ffe785447a979242e736b8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0264-9381/33/2/025009/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Nozari, K</creatorcontrib><creatorcontrib>Gorji, M A</creatorcontrib><creatorcontrib>Hosseinzadeh, V</creatorcontrib><creatorcontrib>Vakili, B</creatorcontrib><title>Natural cutoffs via compact symplectic manifolds</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>In the context of phenomenological models of quantum gravity, it is claimed that ultraviolet (UV) and infrared (IR) natural cutoffs can be realized from local deformations of the Hamiltonian systems. In this paper, we scrutinize this hypothesis and formulate a cutoff-regularized Hamiltonian system. The results show that while local deformations are necessary to have cutoffs, they are not sufficient. In fact, the cutoffs can be realized from globally-deformed Hamiltonian systems that are defined on compact symplectic manifolds. By taking the universality of quantum gravity effects into account, we then conclude that quantum gravity cutoffs are global (topological) properties of the symplectic manifolds. We justify our results by considering three well-known examples: the Moyal, Snyder and polymer-deformed Hamiltonian systems.</description><subject>Deformation</subject><subject>Hamiltonian functions</subject><subject>Infrared</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>natural cutoffs</subject><subject>Quantum gravity</subject><subject>symplectic manifold</subject><subject>Topology</subject><subject>Ultraviolet</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAUxIMoWFc_gtCjl7ovf196lEVdYdGLnkPMJtClbWrSCvvt7VLx6unx4DfDzBByS-GegtZrYEpUNdd0zfmaza8EqM9IQbmileKanZPij7kkVzkfACjVlBUEXu04JduWbhpjCLn8bmzpYjdYN5b52A2td2Pjys72TYjtPl-Ti2Db7G9-74p8PD2-b7bV7u35ZfOwqxxneqwQ0UuOAlBY71SYgzoMGPayVtopLr3aO2SIIXjUUgi0NdZMMI9cferAV-Ru8R1S_Jp8Hk3XZOfb1vY-TtnM8RUACIkzKhfUpZhz8sEMqelsOhoK5rSQObU3p_aGc8PMstCso4uuiYM5xCn1c6F_ND8DJGZI</recordid><startdate>20160121</startdate><enddate>20160121</enddate><creator>Nozari, K</creator><creator>Gorji, M A</creator><creator>Hosseinzadeh, V</creator><creator>Vakili, B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160121</creationdate><title>Natural cutoffs via compact symplectic manifolds</title><author>Nozari, K ; Gorji, M A ; Hosseinzadeh, V ; Vakili, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-777e5374074aec6f108c7f7fd5968c635e6dc7277ffe785447a979242e736b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Deformation</topic><topic>Hamiltonian functions</topic><topic>Infrared</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>natural cutoffs</topic><topic>Quantum gravity</topic><topic>symplectic manifold</topic><topic>Topology</topic><topic>Ultraviolet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nozari, K</creatorcontrib><creatorcontrib>Gorji, M A</creatorcontrib><creatorcontrib>Hosseinzadeh, V</creatorcontrib><creatorcontrib>Vakili, B</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nozari, K</au><au>Gorji, M A</au><au>Hosseinzadeh, V</au><au>Vakili, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural cutoffs via compact symplectic manifolds</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2016-01-21</date><risdate>2016</risdate><volume>33</volume><issue>2</issue><spage>25009</spage><epage>25029</epage><pages>25009-25029</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>In the context of phenomenological models of quantum gravity, it is claimed that ultraviolet (UV) and infrared (IR) natural cutoffs can be realized from local deformations of the Hamiltonian systems. In this paper, we scrutinize this hypothesis and formulate a cutoff-regularized Hamiltonian system. The results show that while local deformations are necessary to have cutoffs, they are not sufficient. In fact, the cutoffs can be realized from globally-deformed Hamiltonian systems that are defined on compact symplectic manifolds. By taking the universality of quantum gravity effects into account, we then conclude that quantum gravity cutoffs are global (topological) properties of the symplectic manifolds. We justify our results by considering three well-known examples: the Moyal, Snyder and polymer-deformed Hamiltonian systems.</abstract><pub>IOP Publishing</pub><doi>10.1088/0264-9381/33/2/025009</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-9381 |
ispartof | Classical and quantum gravity, 2016-01, Vol.33 (2), p.25009-25029 |
issn | 0264-9381 1361-6382 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816000457 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Deformation Hamiltonian functions Infrared Manifolds Manifolds (mathematics) natural cutoffs Quantum gravity symplectic manifold Topology Ultraviolet |
title | Natural cutoffs via compact symplectic manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20cutoffs%20via%20compact%20symplectic%20manifolds&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Nozari,%20K&rft.date=2016-01-21&rft.volume=33&rft.issue=2&rft.spage=25009&rft.epage=25029&rft.pages=25009-25029&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/33/2/025009&rft_dat=%3Cproquest_cross%3E1816000457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816000457&rft_id=info:pmid/&rfr_iscdi=true |