Natural cutoffs via compact symplectic manifolds

In the context of phenomenological models of quantum gravity, it is claimed that ultraviolet (UV) and infrared (IR) natural cutoffs can be realized from local deformations of the Hamiltonian systems. In this paper, we scrutinize this hypothesis and formulate a cutoff-regularized Hamiltonian system....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2016-01, Vol.33 (2), p.25009-25029
Hauptverfasser: Nozari, K, Gorji, M A, Hosseinzadeh, V, Vakili, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25029
container_issue 2
container_start_page 25009
container_title Classical and quantum gravity
container_volume 33
creator Nozari, K
Gorji, M A
Hosseinzadeh, V
Vakili, B
description In the context of phenomenological models of quantum gravity, it is claimed that ultraviolet (UV) and infrared (IR) natural cutoffs can be realized from local deformations of the Hamiltonian systems. In this paper, we scrutinize this hypothesis and formulate a cutoff-regularized Hamiltonian system. The results show that while local deformations are necessary to have cutoffs, they are not sufficient. In fact, the cutoffs can be realized from globally-deformed Hamiltonian systems that are defined on compact symplectic manifolds. By taking the universality of quantum gravity effects into account, we then conclude that quantum gravity cutoffs are global (topological) properties of the symplectic manifolds. We justify our results by considering three well-known examples: the Moyal, Snyder and polymer-deformed Hamiltonian systems.
doi_str_mv 10.1088/0264-9381/33/2/025009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816000457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816000457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-777e5374074aec6f108c7f7fd5968c635e6dc7277ffe785447a979242e736b8f3</originalsourceid><addsrcrecordid>eNqFkE9LxDAUxIMoWFc_gtCjl7ovf196lEVdYdGLnkPMJtClbWrSCvvt7VLx6unx4DfDzBByS-GegtZrYEpUNdd0zfmaza8EqM9IQbmileKanZPij7kkVzkfACjVlBUEXu04JduWbhpjCLn8bmzpYjdYN5b52A2td2Pjys72TYjtPl-Ti2Db7G9-74p8PD2-b7bV7u35ZfOwqxxneqwQ0UuOAlBY71SYgzoMGPayVtopLr3aO2SIIXjUUgi0NdZMMI9cferAV-Ru8R1S_Jp8Hk3XZOfb1vY-TtnM8RUACIkzKhfUpZhz8sEMqelsOhoK5rSQObU3p_aGc8PMstCso4uuiYM5xCn1c6F_ND8DJGZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816000457</pqid></control><display><type>article</type><title>Natural cutoffs via compact symplectic manifolds</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Nozari, K ; Gorji, M A ; Hosseinzadeh, V ; Vakili, B</creator><creatorcontrib>Nozari, K ; Gorji, M A ; Hosseinzadeh, V ; Vakili, B</creatorcontrib><description>In the context of phenomenological models of quantum gravity, it is claimed that ultraviolet (UV) and infrared (IR) natural cutoffs can be realized from local deformations of the Hamiltonian systems. In this paper, we scrutinize this hypothesis and formulate a cutoff-regularized Hamiltonian system. The results show that while local deformations are necessary to have cutoffs, they are not sufficient. In fact, the cutoffs can be realized from globally-deformed Hamiltonian systems that are defined on compact symplectic manifolds. By taking the universality of quantum gravity effects into account, we then conclude that quantum gravity cutoffs are global (topological) properties of the symplectic manifolds. We justify our results by considering three well-known examples: the Moyal, Snyder and polymer-deformed Hamiltonian systems.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/33/2/025009</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Deformation ; Hamiltonian functions ; Infrared ; Manifolds ; Manifolds (mathematics) ; natural cutoffs ; Quantum gravity ; symplectic manifold ; Topology ; Ultraviolet</subject><ispartof>Classical and quantum gravity, 2016-01, Vol.33 (2), p.25009-25029</ispartof><rights>2016 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-777e5374074aec6f108c7f7fd5968c635e6dc7277ffe785447a979242e736b8f3</citedby><cites>FETCH-LOGICAL-c328t-777e5374074aec6f108c7f7fd5968c635e6dc7277ffe785447a979242e736b8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0264-9381/33/2/025009/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Nozari, K</creatorcontrib><creatorcontrib>Gorji, M A</creatorcontrib><creatorcontrib>Hosseinzadeh, V</creatorcontrib><creatorcontrib>Vakili, B</creatorcontrib><title>Natural cutoffs via compact symplectic manifolds</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>In the context of phenomenological models of quantum gravity, it is claimed that ultraviolet (UV) and infrared (IR) natural cutoffs can be realized from local deformations of the Hamiltonian systems. In this paper, we scrutinize this hypothesis and formulate a cutoff-regularized Hamiltonian system. The results show that while local deformations are necessary to have cutoffs, they are not sufficient. In fact, the cutoffs can be realized from globally-deformed Hamiltonian systems that are defined on compact symplectic manifolds. By taking the universality of quantum gravity effects into account, we then conclude that quantum gravity cutoffs are global (topological) properties of the symplectic manifolds. We justify our results by considering three well-known examples: the Moyal, Snyder and polymer-deformed Hamiltonian systems.</description><subject>Deformation</subject><subject>Hamiltonian functions</subject><subject>Infrared</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>natural cutoffs</subject><subject>Quantum gravity</subject><subject>symplectic manifold</subject><subject>Topology</subject><subject>Ultraviolet</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAUxIMoWFc_gtCjl7ovf196lEVdYdGLnkPMJtClbWrSCvvt7VLx6unx4DfDzBByS-GegtZrYEpUNdd0zfmaza8EqM9IQbmileKanZPij7kkVzkfACjVlBUEXu04JduWbhpjCLn8bmzpYjdYN5b52A2td2Pjys72TYjtPl-Ti2Db7G9-74p8PD2-b7bV7u35ZfOwqxxneqwQ0UuOAlBY71SYgzoMGPayVtopLr3aO2SIIXjUUgi0NdZMMI9cferAV-Ru8R1S_Jp8Hk3XZOfb1vY-TtnM8RUACIkzKhfUpZhz8sEMqelsOhoK5rSQObU3p_aGc8PMstCso4uuiYM5xCn1c6F_ND8DJGZI</recordid><startdate>20160121</startdate><enddate>20160121</enddate><creator>Nozari, K</creator><creator>Gorji, M A</creator><creator>Hosseinzadeh, V</creator><creator>Vakili, B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160121</creationdate><title>Natural cutoffs via compact symplectic manifolds</title><author>Nozari, K ; Gorji, M A ; Hosseinzadeh, V ; Vakili, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-777e5374074aec6f108c7f7fd5968c635e6dc7277ffe785447a979242e736b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Deformation</topic><topic>Hamiltonian functions</topic><topic>Infrared</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>natural cutoffs</topic><topic>Quantum gravity</topic><topic>symplectic manifold</topic><topic>Topology</topic><topic>Ultraviolet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nozari, K</creatorcontrib><creatorcontrib>Gorji, M A</creatorcontrib><creatorcontrib>Hosseinzadeh, V</creatorcontrib><creatorcontrib>Vakili, B</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nozari, K</au><au>Gorji, M A</au><au>Hosseinzadeh, V</au><au>Vakili, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural cutoffs via compact symplectic manifolds</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2016-01-21</date><risdate>2016</risdate><volume>33</volume><issue>2</issue><spage>25009</spage><epage>25029</epage><pages>25009-25029</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>In the context of phenomenological models of quantum gravity, it is claimed that ultraviolet (UV) and infrared (IR) natural cutoffs can be realized from local deformations of the Hamiltonian systems. In this paper, we scrutinize this hypothesis and formulate a cutoff-regularized Hamiltonian system. The results show that while local deformations are necessary to have cutoffs, they are not sufficient. In fact, the cutoffs can be realized from globally-deformed Hamiltonian systems that are defined on compact symplectic manifolds. By taking the universality of quantum gravity effects into account, we then conclude that quantum gravity cutoffs are global (topological) properties of the symplectic manifolds. We justify our results by considering three well-known examples: the Moyal, Snyder and polymer-deformed Hamiltonian systems.</abstract><pub>IOP Publishing</pub><doi>10.1088/0264-9381/33/2/025009</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2016-01, Vol.33 (2), p.25009-25029
issn 0264-9381
1361-6382
language eng
recordid cdi_proquest_miscellaneous_1816000457
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Deformation
Hamiltonian functions
Infrared
Manifolds
Manifolds (mathematics)
natural cutoffs
Quantum gravity
symplectic manifold
Topology
Ultraviolet
title Natural cutoffs via compact symplectic manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20cutoffs%20via%20compact%20symplectic%20manifolds&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Nozari,%20K&rft.date=2016-01-21&rft.volume=33&rft.issue=2&rft.spage=25009&rft.epage=25029&rft.pages=25009-25029&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/33/2/025009&rft_dat=%3Cproquest_cross%3E1816000457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816000457&rft_id=info:pmid/&rfr_iscdi=true