Fabrication of stacked-cup carbon nanotube/polymer nanocomposite films with linear controlled percolation routes
Linear assemblies of stacked-cup carbon nanotubes (SCCNTs) were fabricated with structural variation triggered-by applied electric field in a polymer matrix while the prepolymer suspension of polysiloxane was cross-linked. Combination of solvent and the vacuum treatment was applied to facilitate the...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2016-03, Vol.171, p.39-44 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | |
container_start_page | 39 |
container_title | Materials chemistry and physics |
container_volume | 171 |
creator | Huynh, Minh Triet Tan Nakayama, Tadachika Kawamoto, Akira Nguyen, Son Thanh Suzuki, Tsuneo Suematsu, Hisayuki Niihara, Koichi Cho, Hong-Baek Choa, Yong-Ho |
description | Linear assemblies of stacked-cup carbon nanotubes (SCCNTs) were fabricated with structural variation triggered-by applied electric field in a polymer matrix while the prepolymer suspension of polysiloxane was cross-linked. Combination of solvent and the vacuum treatment was applied to facilitate the narrower filler-to-filler gaps with decreased void volume of the composite. The assembly of the SCCNTs in the polymer was achieved without surface modification at less than 0.15 vol% filler. The resulting polymer nanocomposites had significantly fewer micropores and decreased electrical resistivity, a decrease of 5 orders of magnitude compared with composite with a random distribution of fillers, demonstrating their potential as an electrode sensor for biomedical brain-wave monitoring without generating artifact images. This work may provide valuable guidelines for designing optimum polymer electrode sensors from 1 dimensional SCCNT assemblies.
[Display omitted]
•Controlled linear assemblies of stacked-cup carbon nanotubes (LA-SCCNTs).•Noticeable decrease of micropores in composite films by solvent & vacuum treatments.•Significant decrease in the electrical resistivity with reduced amount of filler.•Potential as biomedical electrode sensors that do not result in EEG artifacts.•No generation of artifact images under X-rays. |
doi_str_mv | 10.1016/j.matchemphys.2016.01.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815999902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S025405841630027X</els_id><sourcerecordid>1815999902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-bfb306ca3cfb94ef85ac1b5c7da8001a3f872bfefb9d73c48517faca7c30af4c3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEuPjP5Qbl5akadfuiCa-JCQucI5c19Ey0qYkKWj_noxx4Igvll6_fmU_jF0JXgguljfbYoCIGxqmzS4UZZIKLgpeNkdsIdpmlUspymO24GVd5bxuq1N2FsKWc9EIIRdsuofOG4Ro3Jg5nYUI-E59jvOUIfguqSOMLs4d3UzO7gbyPwK6YXLBRMq0sUPIvkzcZNaMBD5DN0bvrKU-m8ijs4d07-ZI4YKdaLCBLn_7OXu7v3tdP-bPLw9P69vnHKuyinmnO8mXCBJ1t6pItzWg6GpsemjT8SB125SdpjTtG4lVW4tGA0KDkoOuUJ6z60Pu5N3HTCGqwQQka2EkNwclWlGvUvEyWVcHK3oXgietJm8G8DsluNpTVlv1h7LaU1ZcqEQ57a4Pu5R--TTkVUBDI1JvPGFUvTP_SPkG_6aRLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815999902</pqid></control><display><type>article</type><title>Fabrication of stacked-cup carbon nanotube/polymer nanocomposite films with linear controlled percolation routes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Huynh, Minh Triet Tan ; Nakayama, Tadachika ; Kawamoto, Akira ; Nguyen, Son Thanh ; Suzuki, Tsuneo ; Suematsu, Hisayuki ; Niihara, Koichi ; Cho, Hong-Baek ; Choa, Yong-Ho</creator><creatorcontrib>Huynh, Minh Triet Tan ; Nakayama, Tadachika ; Kawamoto, Akira ; Nguyen, Son Thanh ; Suzuki, Tsuneo ; Suematsu, Hisayuki ; Niihara, Koichi ; Cho, Hong-Baek ; Choa, Yong-Ho</creatorcontrib><description>Linear assemblies of stacked-cup carbon nanotubes (SCCNTs) were fabricated with structural variation triggered-by applied electric field in a polymer matrix while the prepolymer suspension of polysiloxane was cross-linked. Combination of solvent and the vacuum treatment was applied to facilitate the narrower filler-to-filler gaps with decreased void volume of the composite. The assembly of the SCCNTs in the polymer was achieved without surface modification at less than 0.15 vol% filler. The resulting polymer nanocomposites had significantly fewer micropores and decreased electrical resistivity, a decrease of 5 orders of magnitude compared with composite with a random distribution of fillers, demonstrating their potential as an electrode sensor for biomedical brain-wave monitoring without generating artifact images. This work may provide valuable guidelines for designing optimum polymer electrode sensors from 1 dimensional SCCNT assemblies.
[Display omitted]
•Controlled linear assemblies of stacked-cup carbon nanotubes (LA-SCCNTs).•Noticeable decrease of micropores in composite films by solvent & vacuum treatments.•Significant decrease in the electrical resistivity with reduced amount of filler.•Potential as biomedical electrode sensors that do not result in EEG artifacts.•No generation of artifact images under X-rays.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2016.01.027</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Assemblies ; Carbon nanotubes ; Composite materials ; Electric fields ; Electrical conductivity ; Electrodes ; Fillers ; Microstructure ; Nanocomposites ; Polymers ; Polysiloxanes ; Sensors</subject><ispartof>Materials chemistry and physics, 2016-03, Vol.171, p.39-44</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-bfb306ca3cfb94ef85ac1b5c7da8001a3f872bfefb9d73c48517faca7c30af4c3</citedby><cites>FETCH-LOGICAL-c424t-bfb306ca3cfb94ef85ac1b5c7da8001a3f872bfefb9d73c48517faca7c30af4c3</cites><orcidid>0000-0002-1254-3593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchemphys.2016.01.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Huynh, Minh Triet Tan</creatorcontrib><creatorcontrib>Nakayama, Tadachika</creatorcontrib><creatorcontrib>Kawamoto, Akira</creatorcontrib><creatorcontrib>Nguyen, Son Thanh</creatorcontrib><creatorcontrib>Suzuki, Tsuneo</creatorcontrib><creatorcontrib>Suematsu, Hisayuki</creatorcontrib><creatorcontrib>Niihara, Koichi</creatorcontrib><creatorcontrib>Cho, Hong-Baek</creatorcontrib><creatorcontrib>Choa, Yong-Ho</creatorcontrib><title>Fabrication of stacked-cup carbon nanotube/polymer nanocomposite films with linear controlled percolation routes</title><title>Materials chemistry and physics</title><description>Linear assemblies of stacked-cup carbon nanotubes (SCCNTs) were fabricated with structural variation triggered-by applied electric field in a polymer matrix while the prepolymer suspension of polysiloxane was cross-linked. Combination of solvent and the vacuum treatment was applied to facilitate the narrower filler-to-filler gaps with decreased void volume of the composite. The assembly of the SCCNTs in the polymer was achieved without surface modification at less than 0.15 vol% filler. The resulting polymer nanocomposites had significantly fewer micropores and decreased electrical resistivity, a decrease of 5 orders of magnitude compared with composite with a random distribution of fillers, demonstrating their potential as an electrode sensor for biomedical brain-wave monitoring without generating artifact images. This work may provide valuable guidelines for designing optimum polymer electrode sensors from 1 dimensional SCCNT assemblies.
[Display omitted]
•Controlled linear assemblies of stacked-cup carbon nanotubes (LA-SCCNTs).•Noticeable decrease of micropores in composite films by solvent & vacuum treatments.•Significant decrease in the electrical resistivity with reduced amount of filler.•Potential as biomedical electrode sensors that do not result in EEG artifacts.•No generation of artifact images under X-rays.</description><subject>Assemblies</subject><subject>Carbon nanotubes</subject><subject>Composite materials</subject><subject>Electric fields</subject><subject>Electrical conductivity</subject><subject>Electrodes</subject><subject>Fillers</subject><subject>Microstructure</subject><subject>Nanocomposites</subject><subject>Polymers</subject><subject>Polysiloxanes</subject><subject>Sensors</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEuPjP5Qbl5akadfuiCa-JCQucI5c19Ey0qYkKWj_noxx4Igvll6_fmU_jF0JXgguljfbYoCIGxqmzS4UZZIKLgpeNkdsIdpmlUspymO24GVd5bxuq1N2FsKWc9EIIRdsuofOG4Ro3Jg5nYUI-E59jvOUIfguqSOMLs4d3UzO7gbyPwK6YXLBRMq0sUPIvkzcZNaMBD5DN0bvrKU-m8ijs4d07-ZI4YKdaLCBLn_7OXu7v3tdP-bPLw9P69vnHKuyinmnO8mXCBJ1t6pItzWg6GpsemjT8SB125SdpjTtG4lVW4tGA0KDkoOuUJ6z60Pu5N3HTCGqwQQka2EkNwclWlGvUvEyWVcHK3oXgietJm8G8DsluNpTVlv1h7LaU1ZcqEQ57a4Pu5R--TTkVUBDI1JvPGFUvTP_SPkG_6aRLQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Huynh, Minh Triet Tan</creator><creator>Nakayama, Tadachika</creator><creator>Kawamoto, Akira</creator><creator>Nguyen, Son Thanh</creator><creator>Suzuki, Tsuneo</creator><creator>Suematsu, Hisayuki</creator><creator>Niihara, Koichi</creator><creator>Cho, Hong-Baek</creator><creator>Choa, Yong-Ho</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1254-3593</orcidid></search><sort><creationdate>20160301</creationdate><title>Fabrication of stacked-cup carbon nanotube/polymer nanocomposite films with linear controlled percolation routes</title><author>Huynh, Minh Triet Tan ; Nakayama, Tadachika ; Kawamoto, Akira ; Nguyen, Son Thanh ; Suzuki, Tsuneo ; Suematsu, Hisayuki ; Niihara, Koichi ; Cho, Hong-Baek ; Choa, Yong-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-bfb306ca3cfb94ef85ac1b5c7da8001a3f872bfefb9d73c48517faca7c30af4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Assemblies</topic><topic>Carbon nanotubes</topic><topic>Composite materials</topic><topic>Electric fields</topic><topic>Electrical conductivity</topic><topic>Electrodes</topic><topic>Fillers</topic><topic>Microstructure</topic><topic>Nanocomposites</topic><topic>Polymers</topic><topic>Polysiloxanes</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huynh, Minh Triet Tan</creatorcontrib><creatorcontrib>Nakayama, Tadachika</creatorcontrib><creatorcontrib>Kawamoto, Akira</creatorcontrib><creatorcontrib>Nguyen, Son Thanh</creatorcontrib><creatorcontrib>Suzuki, Tsuneo</creatorcontrib><creatorcontrib>Suematsu, Hisayuki</creatorcontrib><creatorcontrib>Niihara, Koichi</creatorcontrib><creatorcontrib>Cho, Hong-Baek</creatorcontrib><creatorcontrib>Choa, Yong-Ho</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huynh, Minh Triet Tan</au><au>Nakayama, Tadachika</au><au>Kawamoto, Akira</au><au>Nguyen, Son Thanh</au><au>Suzuki, Tsuneo</au><au>Suematsu, Hisayuki</au><au>Niihara, Koichi</au><au>Cho, Hong-Baek</au><au>Choa, Yong-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of stacked-cup carbon nanotube/polymer nanocomposite films with linear controlled percolation routes</atitle><jtitle>Materials chemistry and physics</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>171</volume><spage>39</spage><epage>44</epage><pages>39-44</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>Linear assemblies of stacked-cup carbon nanotubes (SCCNTs) were fabricated with structural variation triggered-by applied electric field in a polymer matrix while the prepolymer suspension of polysiloxane was cross-linked. Combination of solvent and the vacuum treatment was applied to facilitate the narrower filler-to-filler gaps with decreased void volume of the composite. The assembly of the SCCNTs in the polymer was achieved without surface modification at less than 0.15 vol% filler. The resulting polymer nanocomposites had significantly fewer micropores and decreased electrical resistivity, a decrease of 5 orders of magnitude compared with composite with a random distribution of fillers, demonstrating their potential as an electrode sensor for biomedical brain-wave monitoring without generating artifact images. This work may provide valuable guidelines for designing optimum polymer electrode sensors from 1 dimensional SCCNT assemblies.
[Display omitted]
•Controlled linear assemblies of stacked-cup carbon nanotubes (LA-SCCNTs).•Noticeable decrease of micropores in composite films by solvent & vacuum treatments.•Significant decrease in the electrical resistivity with reduced amount of filler.•Potential as biomedical electrode sensors that do not result in EEG artifacts.•No generation of artifact images under X-rays.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2016.01.027</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1254-3593</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-0584 |
ispartof | Materials chemistry and physics, 2016-03, Vol.171, p.39-44 |
issn | 0254-0584 1879-3312 |
language | eng |
recordid | cdi_proquest_miscellaneous_1815999902 |
source | Access via ScienceDirect (Elsevier) |
subjects | Assemblies Carbon nanotubes Composite materials Electric fields Electrical conductivity Electrodes Fillers Microstructure Nanocomposites Polymers Polysiloxanes Sensors |
title | Fabrication of stacked-cup carbon nanotube/polymer nanocomposite films with linear controlled percolation routes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20stacked-cup%20carbon%20nanotube/polymer%20nanocomposite%20films%20with%20linear%20controlled%20percolation%20routes&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Huynh,%20Minh%20Triet%20Tan&rft.date=2016-03-01&rft.volume=171&rft.spage=39&rft.epage=44&rft.pages=39-44&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2016.01.027&rft_dat=%3Cproquest_cross%3E1815999902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1815999902&rft_id=info:pmid/&rft_els_id=S025405841630027X&rfr_iscdi=true |