Investigation of Francis Turbine Part Load Instabilities using Flow Simulations with a Hybrid RANS-LES Turbulence Model

The operation of Francis turbines in part load condition causes high pressure fluctuations and dynamic loads in the turbine as well as high flow losses in the draft tube. Owing to the co-rotating velocity distribution at the runner blade trailing edge a low pressure zone arises in the hub region fin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2014-01, Vol.22 (3), p.32001-32010
Hauptverfasser: Krappel, Timo, Ruprecht, Albert, Riedelbauch, Stefan, Jester-Zuerker, Roland, Jung, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32010
container_issue 3
container_start_page 32001
container_title IOP conference series. Earth and environmental science
container_volume 22
creator Krappel, Timo
Ruprecht, Albert
Riedelbauch, Stefan
Jester-Zuerker, Roland
Jung, Alexander
description The operation of Francis turbines in part load condition causes high pressure fluctuations and dynamic loads in the turbine as well as high flow losses in the draft tube. Owing to the co-rotating velocity distribution at the runner blade trailing edge a low pressure zone arises in the hub region finally leading to a rotating vortex rope in the draft tube. A better understanding and a more accurate prediction of this phenomenon can help in the design process of a Francis turbine. The goal of this study is to reach a quantitatively better numerical prediction of the flow at part load and to evaluate the necessary numerical depth with respect to effort and benefit. As standard practice, simulation results are obtained for the steady state approach with SST turbulence modelling. Those results are contrasted with transient simulations applying a SST as well as a SAS (Scale Adaptive Simulation) turbulence model. The structure of the SAS model is such, that it is able to resolve the turbulent flow behaviour in more detail. The investigations contain a comparison of the flow losses in different turbine components. A detailed flow evaluation is done in the cone and the diffuser of the draft tube. The different numerical approaches show a different representation of the vortex rope phenomenon indicating differences in pressure pulsations at different geometric positions in the entire turbine. Finally, the turbulent flow structures in the draft tube are illustrated with several evaluation methods, such as turbulent eddy viscosity, velocity invariant and turbulent kinetic energy spectra.
doi_str_mv 10.1088/1755-1315/22/3/032001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815999536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1794495597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-9b0066cb1e08e098916c1ea2d492a7c50691cb504609fb1ff4b7636c0b901f5e3</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhhdRUKs_QQh48bJ28rW7ORaxWqgf2HoOSZqtkW2iya7Ff--2lR68eJpheHiZlyfLLjBcY6iqIS45zzHFfEjIkA6BEgB8kJ3s74f7Hcrj7DSld4CiZFScZOuJ_7KpdUvVuuBRqNE4Km9cQvMuauctelaxRdOgFmjiU6u0a1zrbEJdcn6Jxk1Yo5lbdc02IKG1a9-QQvffOroFehk9zvLp7Wyb1jXWG4sewsI2Z9lRrZpkz3_nIHsd385v7vPp093kZjTNDRWszYXuPy2MxhYqC6ISuDDYKrJggqjScCgENpoDK0DUGtc102VBCwNaAK65pYPsapf7EcNn1zeVK5eMbRrlbeiSxBXmQghOi__RUjAmOBdlj17-Qd9DF31fRBJOGSPAQfQU31EmhpSireVHdCsVvyUGuTEnN1bkxpAkRFK5M0d_AP9aioU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534420509</pqid></control><display><type>article</type><title>Investigation of Francis Turbine Part Load Instabilities using Flow Simulations with a Hybrid RANS-LES Turbulence Model</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Krappel, Timo ; Ruprecht, Albert ; Riedelbauch, Stefan ; Jester-Zuerker, Roland ; Jung, Alexander</creator><creatorcontrib>Krappel, Timo ; Ruprecht, Albert ; Riedelbauch, Stefan ; Jester-Zuerker, Roland ; Jung, Alexander</creatorcontrib><description>The operation of Francis turbines in part load condition causes high pressure fluctuations and dynamic loads in the turbine as well as high flow losses in the draft tube. Owing to the co-rotating velocity distribution at the runner blade trailing edge a low pressure zone arises in the hub region finally leading to a rotating vortex rope in the draft tube. A better understanding and a more accurate prediction of this phenomenon can help in the design process of a Francis turbine. The goal of this study is to reach a quantitatively better numerical prediction of the flow at part load and to evaluate the necessary numerical depth with respect to effort and benefit. As standard practice, simulation results are obtained for the steady state approach with SST turbulence modelling. Those results are contrasted with transient simulations applying a SST as well as a SAS (Scale Adaptive Simulation) turbulence model. The structure of the SAS model is such, that it is able to resolve the turbulent flow behaviour in more detail. The investigations contain a comparison of the flow losses in different turbine components. A detailed flow evaluation is done in the cone and the diffuser of the draft tube. The different numerical approaches show a different representation of the vortex rope phenomenon indicating differences in pressure pulsations at different geometric positions in the entire turbine. Finally, the turbulent flow structures in the draft tube are illustrated with several evaluation methods, such as turbulent eddy viscosity, velocity invariant and turbulent kinetic energy spectra.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/22/3/032001</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computational fluid dynamics ; Computer simulation ; Diffusers ; Draft tubes ; Dynamic loads ; Eddy viscosity ; Energy spectra ; Flow simulation ; Fluid flow ; High flow ; High pressure ; Kinetic energy ; Low pressure ; Mathematical models ; Numerical prediction ; Pressure ; Rope ; Rotation ; Turbines ; Turbulence ; Turbulence models ; Turbulent flow ; Velocity ; Velocity distribution</subject><ispartof>IOP conference series. Earth and environmental science, 2014-01, Vol.22 (3), p.32001-32010</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-9b0066cb1e08e098916c1ea2d492a7c50691cb504609fb1ff4b7636c0b901f5e3</citedby><cites>FETCH-LOGICAL-c394t-9b0066cb1e08e098916c1ea2d492a7c50691cb504609fb1ff4b7636c0b901f5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Krappel, Timo</creatorcontrib><creatorcontrib>Ruprecht, Albert</creatorcontrib><creatorcontrib>Riedelbauch, Stefan</creatorcontrib><creatorcontrib>Jester-Zuerker, Roland</creatorcontrib><creatorcontrib>Jung, Alexander</creatorcontrib><title>Investigation of Francis Turbine Part Load Instabilities using Flow Simulations with a Hybrid RANS-LES Turbulence Model</title><title>IOP conference series. Earth and environmental science</title><description>The operation of Francis turbines in part load condition causes high pressure fluctuations and dynamic loads in the turbine as well as high flow losses in the draft tube. Owing to the co-rotating velocity distribution at the runner blade trailing edge a low pressure zone arises in the hub region finally leading to a rotating vortex rope in the draft tube. A better understanding and a more accurate prediction of this phenomenon can help in the design process of a Francis turbine. The goal of this study is to reach a quantitatively better numerical prediction of the flow at part load and to evaluate the necessary numerical depth with respect to effort and benefit. As standard practice, simulation results are obtained for the steady state approach with SST turbulence modelling. Those results are contrasted with transient simulations applying a SST as well as a SAS (Scale Adaptive Simulation) turbulence model. The structure of the SAS model is such, that it is able to resolve the turbulent flow behaviour in more detail. The investigations contain a comparison of the flow losses in different turbine components. A detailed flow evaluation is done in the cone and the diffuser of the draft tube. The different numerical approaches show a different representation of the vortex rope phenomenon indicating differences in pressure pulsations at different geometric positions in the entire turbine. Finally, the turbulent flow structures in the draft tube are illustrated with several evaluation methods, such as turbulent eddy viscosity, velocity invariant and turbulent kinetic energy spectra.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Diffusers</subject><subject>Draft tubes</subject><subject>Dynamic loads</subject><subject>Eddy viscosity</subject><subject>Energy spectra</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>High flow</subject><subject>High pressure</subject><subject>Kinetic energy</subject><subject>Low pressure</subject><subject>Mathematical models</subject><subject>Numerical prediction</subject><subject>Pressure</subject><subject>Rope</subject><subject>Rotation</subject><subject>Turbines</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LAzEQhhdRUKs_QQh48bJ28rW7ORaxWqgf2HoOSZqtkW2iya7Ff--2lR68eJpheHiZlyfLLjBcY6iqIS45zzHFfEjIkA6BEgB8kJ3s74f7Hcrj7DSld4CiZFScZOuJ_7KpdUvVuuBRqNE4Km9cQvMuauctelaxRdOgFmjiU6u0a1zrbEJdcn6Jxk1Yo5lbdc02IKG1a9-QQvffOroFehk9zvLp7Wyb1jXWG4sewsI2Z9lRrZpkz3_nIHsd385v7vPp093kZjTNDRWszYXuPy2MxhYqC6ISuDDYKrJggqjScCgENpoDK0DUGtc102VBCwNaAK65pYPsapf7EcNn1zeVK5eMbRrlbeiSxBXmQghOi__RUjAmOBdlj17-Qd9DF31fRBJOGSPAQfQU31EmhpSireVHdCsVvyUGuTEnN1bkxpAkRFK5M0d_AP9aioU</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Krappel, Timo</creator><creator>Ruprecht, Albert</creator><creator>Riedelbauch, Stefan</creator><creator>Jester-Zuerker, Roland</creator><creator>Jung, Alexander</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140101</creationdate><title>Investigation of Francis Turbine Part Load Instabilities using Flow Simulations with a Hybrid RANS-LES Turbulence Model</title><author>Krappel, Timo ; Ruprecht, Albert ; Riedelbauch, Stefan ; Jester-Zuerker, Roland ; Jung, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-9b0066cb1e08e098916c1ea2d492a7c50691cb504609fb1ff4b7636c0b901f5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Diffusers</topic><topic>Draft tubes</topic><topic>Dynamic loads</topic><topic>Eddy viscosity</topic><topic>Energy spectra</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>High flow</topic><topic>High pressure</topic><topic>Kinetic energy</topic><topic>Low pressure</topic><topic>Mathematical models</topic><topic>Numerical prediction</topic><topic>Pressure</topic><topic>Rope</topic><topic>Rotation</topic><topic>Turbines</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krappel, Timo</creatorcontrib><creatorcontrib>Ruprecht, Albert</creatorcontrib><creatorcontrib>Riedelbauch, Stefan</creatorcontrib><creatorcontrib>Jester-Zuerker, Roland</creatorcontrib><creatorcontrib>Jung, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krappel, Timo</au><au>Ruprecht, Albert</au><au>Riedelbauch, Stefan</au><au>Jester-Zuerker, Roland</au><au>Jung, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Francis Turbine Part Load Instabilities using Flow Simulations with a Hybrid RANS-LES Turbulence Model</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>22</volume><issue>3</issue><spage>32001</spage><epage>32010</epage><pages>32001-32010</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>The operation of Francis turbines in part load condition causes high pressure fluctuations and dynamic loads in the turbine as well as high flow losses in the draft tube. Owing to the co-rotating velocity distribution at the runner blade trailing edge a low pressure zone arises in the hub region finally leading to a rotating vortex rope in the draft tube. A better understanding and a more accurate prediction of this phenomenon can help in the design process of a Francis turbine. The goal of this study is to reach a quantitatively better numerical prediction of the flow at part load and to evaluate the necessary numerical depth with respect to effort and benefit. As standard practice, simulation results are obtained for the steady state approach with SST turbulence modelling. Those results are contrasted with transient simulations applying a SST as well as a SAS (Scale Adaptive Simulation) turbulence model. The structure of the SAS model is such, that it is able to resolve the turbulent flow behaviour in more detail. The investigations contain a comparison of the flow losses in different turbine components. A detailed flow evaluation is done in the cone and the diffuser of the draft tube. The different numerical approaches show a different representation of the vortex rope phenomenon indicating differences in pressure pulsations at different geometric positions in the entire turbine. Finally, the turbulent flow structures in the draft tube are illustrated with several evaluation methods, such as turbulent eddy viscosity, velocity invariant and turbulent kinetic energy spectra.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/22/3/032001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2014-01, Vol.22 (3), p.32001-32010
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_miscellaneous_1815999536
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Computational fluid dynamics
Computer simulation
Diffusers
Draft tubes
Dynamic loads
Eddy viscosity
Energy spectra
Flow simulation
Fluid flow
High flow
High pressure
Kinetic energy
Low pressure
Mathematical models
Numerical prediction
Pressure
Rope
Rotation
Turbines
Turbulence
Turbulence models
Turbulent flow
Velocity
Velocity distribution
title Investigation of Francis Turbine Part Load Instabilities using Flow Simulations with a Hybrid RANS-LES Turbulence Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Francis%20Turbine%20Part%20Load%20Instabilities%20using%20Flow%20Simulations%20with%20a%20Hybrid%20RANS-LES%20Turbulence%20Model&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Krappel,%20Timo&rft.date=2014-01-01&rft.volume=22&rft.issue=3&rft.spage=32001&rft.epage=32010&rft.pages=32001-32010&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/22/3/032001&rft_dat=%3Cproquest_cross%3E1794495597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534420509&rft_id=info:pmid/&rfr_iscdi=true