Numerical solution of distributed order fractional differential equations by hybrid functions

In this paper, a new numerical method for solving the distributed fractional differential equations is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The Riemann–Liouv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2016-06, Vol.315, p.169-181
Hauptverfasser: Mashayekhi, S., Razzaghi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue
container_start_page 169
container_title Journal of computational physics
container_volume 315
creator Mashayekhi, S.
Razzaghi, M.
description In this paper, a new numerical method for solving the distributed fractional differential equations is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The Riemann–Liouville fractional integral operator for hybrid functions is introduced. This operator is then utilized to reduce the solution of the distributed fractional differential equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.
doi_str_mv 10.1016/j.jcp.2016.01.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815994357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199911630016X</els_id><sourcerecordid>1815994357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-5ad8a25d488595d49f4ccd7b5c3da7cf82b1a67aa913ab50dafb1dac8b6c49b63</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwA9g8siT4JnFiiwlVvKQKFhiR5adwlMatnSD13-NSZqZzH9-50j0IXQMpgUB725e93pZVLksCJWngBC2AcFJUHbSnaEFIBQXnHM7RRUo9IYTRhi3Q5-u8sdFrOeAUhnnyYcTBYePTFL2aJ2twiMZG7KLUh20GjXfORjtOPjd2N8vDPGG1x197Fb3Bbh5_2XSJzpwckr360yX6eHx4Xz0X67enl9X9utB1TaaCSsNkRU3DGOVZuGu0Np2iujay045VCmTbScmhlooSI50CIzVTrW64auslujne3cawm22axMYnbYdBjjbMSQADynlT0y6jcER1DClF68Q2-o2MewFEHKIUvchRikOUgoDIUWbP3dFj8w_f3kaRtLejtsZHqydhgv_H_QNki39G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815994357</pqid></control><display><type>article</type><title>Numerical solution of distributed order fractional differential equations by hybrid functions</title><source>Elsevier ScienceDirect Journals</source><creator>Mashayekhi, S. ; Razzaghi, M.</creator><creatorcontrib>Mashayekhi, S. ; Razzaghi, M.</creatorcontrib><description>In this paper, a new numerical method for solving the distributed fractional differential equations is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The Riemann–Liouville fractional integral operator for hybrid functions is introduced. This operator is then utilized to reduce the solution of the distributed fractional differential equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2016.01.041</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algebra ; Approximation ; Bernoulli polynomials ; Blocking ; Caputo derivative ; Differential equations ; Distributed order ; Fractional differential equations ; Hybrid functions ; Mathematical analysis ; Mathematical models ; Numerical solution ; Operators ; Polynomials</subject><ispartof>Journal of computational physics, 2016-06, Vol.315, p.169-181</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-5ad8a25d488595d49f4ccd7b5c3da7cf82b1a67aa913ab50dafb1dac8b6c49b63</citedby><cites>FETCH-LOGICAL-c330t-5ad8a25d488595d49f4ccd7b5c3da7cf82b1a67aa913ab50dafb1dac8b6c49b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199911630016X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mashayekhi, S.</creatorcontrib><creatorcontrib>Razzaghi, M.</creatorcontrib><title>Numerical solution of distributed order fractional differential equations by hybrid functions</title><title>Journal of computational physics</title><description>In this paper, a new numerical method for solving the distributed fractional differential equations is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The Riemann–Liouville fractional integral operator for hybrid functions is introduced. This operator is then utilized to reduce the solution of the distributed fractional differential equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Bernoulli polynomials</subject><subject>Blocking</subject><subject>Caputo derivative</subject><subject>Differential equations</subject><subject>Distributed order</subject><subject>Fractional differential equations</subject><subject>Hybrid functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical solution</subject><subject>Operators</subject><subject>Polynomials</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwA9g8siT4JnFiiwlVvKQKFhiR5adwlMatnSD13-NSZqZzH9-50j0IXQMpgUB725e93pZVLksCJWngBC2AcFJUHbSnaEFIBQXnHM7RRUo9IYTRhi3Q5-u8sdFrOeAUhnnyYcTBYePTFL2aJ2twiMZG7KLUh20GjXfORjtOPjd2N8vDPGG1x197Fb3Bbh5_2XSJzpwckr360yX6eHx4Xz0X67enl9X9utB1TaaCSsNkRU3DGOVZuGu0Np2iujay045VCmTbScmhlooSI50CIzVTrW64auslujne3cawm22axMYnbYdBjjbMSQADynlT0y6jcER1DClF68Q2-o2MewFEHKIUvchRikOUgoDIUWbP3dFj8w_f3kaRtLejtsZHqydhgv_H_QNki39G</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Mashayekhi, S.</creator><creator>Razzaghi, M.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160615</creationdate><title>Numerical solution of distributed order fractional differential equations by hybrid functions</title><author>Mashayekhi, S. ; Razzaghi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-5ad8a25d488595d49f4ccd7b5c3da7cf82b1a67aa913ab50dafb1dac8b6c49b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Bernoulli polynomials</topic><topic>Blocking</topic><topic>Caputo derivative</topic><topic>Differential equations</topic><topic>Distributed order</topic><topic>Fractional differential equations</topic><topic>Hybrid functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical solution</topic><topic>Operators</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mashayekhi, S.</creatorcontrib><creatorcontrib>Razzaghi, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mashayekhi, S.</au><au>Razzaghi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of distributed order fractional differential equations by hybrid functions</atitle><jtitle>Journal of computational physics</jtitle><date>2016-06-15</date><risdate>2016</risdate><volume>315</volume><spage>169</spage><epage>181</epage><pages>169-181</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this paper, a new numerical method for solving the distributed fractional differential equations is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The Riemann–Liouville fractional integral operator for hybrid functions is introduced. This operator is then utilized to reduce the solution of the distributed fractional differential equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2016.01.041</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2016-06, Vol.315, p.169-181
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1815994357
source Elsevier ScienceDirect Journals
subjects Algebra
Approximation
Bernoulli polynomials
Blocking
Caputo derivative
Differential equations
Distributed order
Fractional differential equations
Hybrid functions
Mathematical analysis
Mathematical models
Numerical solution
Operators
Polynomials
title Numerical solution of distributed order fractional differential equations by hybrid functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20distributed%20order%20fractional%20differential%20equations%20by%20hybrid%20functions&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Mashayekhi,%20S.&rft.date=2016-06-15&rft.volume=315&rft.spage=169&rft.epage=181&rft.pages=169-181&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2016.01.041&rft_dat=%3Cproquest_cross%3E1815994357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1815994357&rft_id=info:pmid/&rft_els_id=S002199911630016X&rfr_iscdi=true