Ultralow-Energy Variation-Aware Design: Adder Architecture Study
Power consumption of digital systems is an important issue in nanoscale technologies and growth of process variation makes the problem more challenging. In this brief, we have analyzed the latency, energy consumption, and effects of process variation on different structures with respect to the desig...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2016-03, Vol.24 (3), p.1165-1168 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1168 |
---|---|
container_issue | 3 |
container_start_page | 1165 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 24 |
creator | Dorosti, Hamed Teymouri, Ali Fakhraie, Sied Mehdi Salehi, Mostafa E. |
description | Power consumption of digital systems is an important issue in nanoscale technologies and growth of process variation makes the problem more challenging. In this brief, we have analyzed the latency, energy consumption, and effects of process variation on different structures with respect to the design structure and logic depth to propose architectures with higher throughput, lower energy consumption, and smaller performance loss caused by process variation in application-specific integrated circuit design. We have exploited adders as different implementations of a processing unit, and propose architectural guidelines for finer technologies in subthreshold which are applicable to any other architecture. The results show that smaller computing building blocks have better energy efficiency and less performance degradation because of variation effects. In contrast, their computation throughput will be mid or less unless proper solutions, such as pipelined or parallel structures, are used. Therefore, our proposed solution to improve the throughput loss while reducing sensitivity to process variations is using simpler elements in deep pipelined designs or massively parallel structures. |
doi_str_mv | 10.1109/TVLSI.2015.2426113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815984440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7111375</ieee_id><sourcerecordid>1815984440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-fd6935f2ac32c5bf5529341456899758d670139cda49a63bb0948d1c3c7ac2783</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqXwA7CJxIZNiseP2GZFVQpUqsSij63lOk5JlSZgJ6r697i0YsFsZkb33NHoInQLeACA1eN8OZ1NBgQDHxBGMgB6hnrAuUhVrPM444ymkgC-RFchbDAGxhTuoedF1XpTNbt0XDu_3idL40vTlk2dDnfGu-TFhXJdPyXDPHc-GXr7WbbOtl2UZm2X76_RRWGq4G5OvY8Wr-P56D2dfrxNRsNpaimRbVrkmaK8ICaulq8KzomiDBjPpFKCyzwTGKiyuWHKZHS1worJHCy1wlgiJO2jh-PdL998dy60elsG66rK1K7pggYJXEnGGI7o_T9003S-jt9pEFKQjIOgkSJHyvomBO8K_eXLrfF7DVgfQtW_oepDqPoUajTdHU2lc-7PICBqgtMfKh1xFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787265173</pqid></control><display><type>article</type><title>Ultralow-Energy Variation-Aware Design: Adder Architecture Study</title><source>IEEE Electronic Library (IEL)</source><creator>Dorosti, Hamed ; Teymouri, Ali ; Fakhraie, Sied Mehdi ; Salehi, Mostafa E.</creator><creatorcontrib>Dorosti, Hamed ; Teymouri, Ali ; Fakhraie, Sied Mehdi ; Salehi, Mostafa E.</creatorcontrib><description>Power consumption of digital systems is an important issue in nanoscale technologies and growth of process variation makes the problem more challenging. In this brief, we have analyzed the latency, energy consumption, and effects of process variation on different structures with respect to the design structure and logic depth to propose architectures with higher throughput, lower energy consumption, and smaller performance loss caused by process variation in application-specific integrated circuit design. We have exploited adders as different implementations of a processing unit, and propose architectural guidelines for finer technologies in subthreshold which are applicable to any other architecture. The results show that smaller computing building blocks have better energy efficiency and less performance degradation because of variation effects. In contrast, their computation throughput will be mid or less unless proper solutions, such as pipelined or parallel structures, are used. Therefore, our proposed solution to improve the throughput loss while reducing sensitivity to process variations is using simpler elements in deep pipelined designs or massively parallel structures.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2015.2426113</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adder structures ; Adders ; Architecture ; Computation ; Computer architecture ; deep pipeline ; Delays ; Design analysis ; Design engineering ; Energy consumption ; Integrated circuits ; Logic gates ; massive parallel ; Mathematical models ; statistical static timing analysis (SSTA) ; Throughput ; ultra low energy ; variation-aware ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2016-03, Vol.24 (3), p.1165-1168</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-fd6935f2ac32c5bf5529341456899758d670139cda49a63bb0948d1c3c7ac2783</citedby><cites>FETCH-LOGICAL-c328t-fd6935f2ac32c5bf5529341456899758d670139cda49a63bb0948d1c3c7ac2783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7111375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7111375$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dorosti, Hamed</creatorcontrib><creatorcontrib>Teymouri, Ali</creatorcontrib><creatorcontrib>Fakhraie, Sied Mehdi</creatorcontrib><creatorcontrib>Salehi, Mostafa E.</creatorcontrib><title>Ultralow-Energy Variation-Aware Design: Adder Architecture Study</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Power consumption of digital systems is an important issue in nanoscale technologies and growth of process variation makes the problem more challenging. In this brief, we have analyzed the latency, energy consumption, and effects of process variation on different structures with respect to the design structure and logic depth to propose architectures with higher throughput, lower energy consumption, and smaller performance loss caused by process variation in application-specific integrated circuit design. We have exploited adders as different implementations of a processing unit, and propose architectural guidelines for finer technologies in subthreshold which are applicable to any other architecture. The results show that smaller computing building blocks have better energy efficiency and less performance degradation because of variation effects. In contrast, their computation throughput will be mid or less unless proper solutions, such as pipelined or parallel structures, are used. Therefore, our proposed solution to improve the throughput loss while reducing sensitivity to process variations is using simpler elements in deep pipelined designs or massively parallel structures.</description><subject>Adder structures</subject><subject>Adders</subject><subject>Architecture</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>deep pipeline</subject><subject>Delays</subject><subject>Design analysis</subject><subject>Design engineering</subject><subject>Energy consumption</subject><subject>Integrated circuits</subject><subject>Logic gates</subject><subject>massive parallel</subject><subject>Mathematical models</subject><subject>statistical static timing analysis (SSTA)</subject><subject>Throughput</subject><subject>ultra low energy</subject><subject>variation-aware</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EEqXwA7CJxIZNiseP2GZFVQpUqsSij63lOk5JlSZgJ6r697i0YsFsZkb33NHoInQLeACA1eN8OZ1NBgQDHxBGMgB6hnrAuUhVrPM444ymkgC-RFchbDAGxhTuoedF1XpTNbt0XDu_3idL40vTlk2dDnfGu-TFhXJdPyXDPHc-GXr7WbbOtl2UZm2X76_RRWGq4G5OvY8Wr-P56D2dfrxNRsNpaimRbVrkmaK8ICaulq8KzomiDBjPpFKCyzwTGKiyuWHKZHS1worJHCy1wlgiJO2jh-PdL998dy60elsG66rK1K7pggYJXEnGGI7o_T9003S-jt9pEFKQjIOgkSJHyvomBO8K_eXLrfF7DVgfQtW_oepDqPoUajTdHU2lc-7PICBqgtMfKh1xFg</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Dorosti, Hamed</creator><creator>Teymouri, Ali</creator><creator>Fakhraie, Sied Mehdi</creator><creator>Salehi, Mostafa E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201603</creationdate><title>Ultralow-Energy Variation-Aware Design: Adder Architecture Study</title><author>Dorosti, Hamed ; Teymouri, Ali ; Fakhraie, Sied Mehdi ; Salehi, Mostafa E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-fd6935f2ac32c5bf5529341456899758d670139cda49a63bb0948d1c3c7ac2783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adder structures</topic><topic>Adders</topic><topic>Architecture</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>deep pipeline</topic><topic>Delays</topic><topic>Design analysis</topic><topic>Design engineering</topic><topic>Energy consumption</topic><topic>Integrated circuits</topic><topic>Logic gates</topic><topic>massive parallel</topic><topic>Mathematical models</topic><topic>statistical static timing analysis (SSTA)</topic><topic>Throughput</topic><topic>ultra low energy</topic><topic>variation-aware</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorosti, Hamed</creatorcontrib><creatorcontrib>Teymouri, Ali</creatorcontrib><creatorcontrib>Fakhraie, Sied Mehdi</creatorcontrib><creatorcontrib>Salehi, Mostafa E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dorosti, Hamed</au><au>Teymouri, Ali</au><au>Fakhraie, Sied Mehdi</au><au>Salehi, Mostafa E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow-Energy Variation-Aware Design: Adder Architecture Study</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2016-03</date><risdate>2016</risdate><volume>24</volume><issue>3</issue><spage>1165</spage><epage>1168</epage><pages>1165-1168</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Power consumption of digital systems is an important issue in nanoscale technologies and growth of process variation makes the problem more challenging. In this brief, we have analyzed the latency, energy consumption, and effects of process variation on different structures with respect to the design structure and logic depth to propose architectures with higher throughput, lower energy consumption, and smaller performance loss caused by process variation in application-specific integrated circuit design. We have exploited adders as different implementations of a processing unit, and propose architectural guidelines for finer technologies in subthreshold which are applicable to any other architecture. The results show that smaller computing building blocks have better energy efficiency and less performance degradation because of variation effects. In contrast, their computation throughput will be mid or less unless proper solutions, such as pipelined or parallel structures, are used. Therefore, our proposed solution to improve the throughput loss while reducing sensitivity to process variations is using simpler elements in deep pipelined designs or massively parallel structures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2015.2426113</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2016-03, Vol.24 (3), p.1165-1168 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_proquest_miscellaneous_1815984440 |
source | IEEE Electronic Library (IEL) |
subjects | Adder structures Adders Architecture Computation Computer architecture deep pipeline Delays Design analysis Design engineering Energy consumption Integrated circuits Logic gates massive parallel Mathematical models statistical static timing analysis (SSTA) Throughput ultra low energy variation-aware Very large scale integration |
title | Ultralow-Energy Variation-Aware Design: Adder Architecture Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow-Energy%20Variation-Aware%20Design:%20Adder%20Architecture%20Study&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Dorosti,%20Hamed&rft.date=2016-03&rft.volume=24&rft.issue=3&rft.spage=1165&rft.epage=1168&rft.pages=1165-1168&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2015.2426113&rft_dat=%3Cproquest_RIE%3E1815984440%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787265173&rft_id=info:pmid/&rft_ieee_id=7111375&rfr_iscdi=true |