Evolution of Insulator–Metal Phase Transitions in Epitaxial Tungsten Oxide Films during Electrolyte-Gating

An interface between an oxide and an electrolyte gives rise to various processes as exemplified by electrostatic charge accumulation/depletion and electrochemical reactions such as intercalation/decalation under electric field. Here we directly compare typical device operations of those in electric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-08, Vol.8 (34), p.22330-22336
Hauptverfasser: Nishihaya, Shinichi, Uchida, Masaki, Kozuka, Yusuke, Iwasa, Yoshihiro, Kawasaki, Masashi, Nishihaya, S, Uchida, M, Kozuka, Y, Iwasa, Y, Kawasaki, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22336
container_issue 34
container_start_page 22330
container_title ACS applied materials & interfaces
container_volume 8
creator Nishihaya, Shinichi
Uchida, Masaki
Kozuka, Yusuke
Iwasa, Yoshihiro
Kawasaki, Masashi
Nishihaya, S
Uchida, M
Kozuka, Y
Iwasa, Y
Kawasaki, M
description An interface between an oxide and an electrolyte gives rise to various processes as exemplified by electrostatic charge accumulation/depletion and electrochemical reactions such as intercalation/decalation under electric field. Here we directly compare typical device operations of those in electric double layer transistor geometry by adopting A-site vacant perovskite WO3 epitaxial thin films as a channel material and two different electrolytes as gating agent. In situ measurements of X-ray diffraction and channel resistance performed during the gating revealed that in both the cases WO3 thin film reaches a new metallic state through multiple phase transitions, accompanied by the change in out-of-plane lattice constant. Electrons are electrostatically accumulated from the interface side with an ionic liquid, while alkaline metal ions are more uniformly intercalated into the film with a polymer electrolyte. We systematically demonstrate this difference in the electrostatic and electrochemical processes, by comparing doped carrier density, lattice deformation behavior, and time constant of the phase transitions.
doi_str_mv 10.1021/acsami.6b06593
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815975032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815975032</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-1e43b5a04cc9f6e8277b72a65befee672f293140e4e615cb2837825070630ba23</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWi9bl5KlCFOTTDKXpZSqhUpd1PWQmZ6pkUxSk4y0O9_BN_RJTGl15-qEk-_88H8IXVIypITRW9l42alhVpNMlOkBGtCS86Rggh3-vTk_QafevxGSpYyIY3TCckGY4NkA6fGH1X1Q1mDb4onxvZbBuu_PrycIUuPnV-kBz500Xm0pj5XB45UKcq3i97w3Sx_A4NlaLQDfK915vOidMks81tAEZ_UmQPIgQ1ydo6NWag8X-3mGXu7H89FjMp09TEZ300TygoSEAk9rIQlvmrLNoGB5XudMZqKGFiDLWcvKlHICHDIqmpoVaR4bkzz2I7Vk6Rm63uWunH3vwYeqU74BraUB2_uKFlSUUUG6RYc7tHHWewdttXKqk25TUVJtDVc7w9XecDy42mf3dQeLP_xXaQRudkA8rN5s70ys-l_aD60Sh9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815975032</pqid></control><display><type>article</type><title>Evolution of Insulator–Metal Phase Transitions in Epitaxial Tungsten Oxide Films during Electrolyte-Gating</title><source>American Chemical Society Journals</source><creator>Nishihaya, Shinichi ; Uchida, Masaki ; Kozuka, Yusuke ; Iwasa, Yoshihiro ; Kawasaki, Masashi ; Nishihaya, S ; Uchida, M ; Kozuka, Y ; Iwasa, Y ; Kawasaki, M</creator><creatorcontrib>Nishihaya, Shinichi ; Uchida, Masaki ; Kozuka, Yusuke ; Iwasa, Yoshihiro ; Kawasaki, Masashi ; Nishihaya, S ; Uchida, M ; Kozuka, Y ; Iwasa, Y ; Kawasaki, M</creatorcontrib><description>An interface between an oxide and an electrolyte gives rise to various processes as exemplified by electrostatic charge accumulation/depletion and electrochemical reactions such as intercalation/decalation under electric field. Here we directly compare typical device operations of those in electric double layer transistor geometry by adopting A-site vacant perovskite WO3 epitaxial thin films as a channel material and two different electrolytes as gating agent. In situ measurements of X-ray diffraction and channel resistance performed during the gating revealed that in both the cases WO3 thin film reaches a new metallic state through multiple phase transitions, accompanied by the change in out-of-plane lattice constant. Electrons are electrostatically accumulated from the interface side with an ionic liquid, while alkaline metal ions are more uniformly intercalated into the film with a polymer electrolyte. We systematically demonstrate this difference in the electrostatic and electrochemical processes, by comparing doped carrier density, lattice deformation behavior, and time constant of the phase transitions.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b06593</identifier><identifier>PMID: 27502546</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2016-08, Vol.8 (34), p.22330-22336</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a480t-1e43b5a04cc9f6e8277b72a65befee672f293140e4e615cb2837825070630ba23</citedby><cites>FETCH-LOGICAL-a480t-1e43b5a04cc9f6e8277b72a65befee672f293140e4e615cb2837825070630ba23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b06593$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b06593$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27502546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishihaya, Shinichi</creatorcontrib><creatorcontrib>Uchida, Masaki</creatorcontrib><creatorcontrib>Kozuka, Yusuke</creatorcontrib><creatorcontrib>Iwasa, Yoshihiro</creatorcontrib><creatorcontrib>Kawasaki, Masashi</creatorcontrib><creatorcontrib>Nishihaya, S</creatorcontrib><creatorcontrib>Uchida, M</creatorcontrib><creatorcontrib>Kozuka, Y</creatorcontrib><creatorcontrib>Iwasa, Y</creatorcontrib><creatorcontrib>Kawasaki, M</creatorcontrib><title>Evolution of Insulator–Metal Phase Transitions in Epitaxial Tungsten Oxide Films during Electrolyte-Gating</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>An interface between an oxide and an electrolyte gives rise to various processes as exemplified by electrostatic charge accumulation/depletion and electrochemical reactions such as intercalation/decalation under electric field. Here we directly compare typical device operations of those in electric double layer transistor geometry by adopting A-site vacant perovskite WO3 epitaxial thin films as a channel material and two different electrolytes as gating agent. In situ measurements of X-ray diffraction and channel resistance performed during the gating revealed that in both the cases WO3 thin film reaches a new metallic state through multiple phase transitions, accompanied by the change in out-of-plane lattice constant. Electrons are electrostatically accumulated from the interface side with an ionic liquid, while alkaline metal ions are more uniformly intercalated into the film with a polymer electrolyte. We systematically demonstrate this difference in the electrostatic and electrochemical processes, by comparing doped carrier density, lattice deformation behavior, and time constant of the phase transitions.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWi9bl5KlCFOTTDKXpZSqhUpd1PWQmZ6pkUxSk4y0O9_BN_RJTGl15-qEk-_88H8IXVIypITRW9l42alhVpNMlOkBGtCS86Rggh3-vTk_QafevxGSpYyIY3TCckGY4NkA6fGH1X1Q1mDb4onxvZbBuu_PrycIUuPnV-kBz500Xm0pj5XB45UKcq3i97w3Sx_A4NlaLQDfK915vOidMks81tAEZ_UmQPIgQ1ydo6NWag8X-3mGXu7H89FjMp09TEZ300TygoSEAk9rIQlvmrLNoGB5XudMZqKGFiDLWcvKlHICHDIqmpoVaR4bkzz2I7Vk6Rm63uWunH3vwYeqU74BraUB2_uKFlSUUUG6RYc7tHHWewdttXKqk25TUVJtDVc7w9XecDy42mf3dQeLP_xXaQRudkA8rN5s70ys-l_aD60Sh9M</recordid><startdate>20160831</startdate><enddate>20160831</enddate><creator>Nishihaya, Shinichi</creator><creator>Uchida, Masaki</creator><creator>Kozuka, Yusuke</creator><creator>Iwasa, Yoshihiro</creator><creator>Kawasaki, Masashi</creator><creator>Nishihaya, S</creator><creator>Uchida, M</creator><creator>Kozuka, Y</creator><creator>Iwasa, Y</creator><creator>Kawasaki, M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160831</creationdate><title>Evolution of Insulator–Metal Phase Transitions in Epitaxial Tungsten Oxide Films during Electrolyte-Gating</title><author>Nishihaya, Shinichi ; Uchida, Masaki ; Kozuka, Yusuke ; Iwasa, Yoshihiro ; Kawasaki, Masashi ; Nishihaya, S ; Uchida, M ; Kozuka, Y ; Iwasa, Y ; Kawasaki, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-1e43b5a04cc9f6e8277b72a65befee672f293140e4e615cb2837825070630ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishihaya, Shinichi</creatorcontrib><creatorcontrib>Uchida, Masaki</creatorcontrib><creatorcontrib>Kozuka, Yusuke</creatorcontrib><creatorcontrib>Iwasa, Yoshihiro</creatorcontrib><creatorcontrib>Kawasaki, Masashi</creatorcontrib><creatorcontrib>Nishihaya, S</creatorcontrib><creatorcontrib>Uchida, M</creatorcontrib><creatorcontrib>Kozuka, Y</creatorcontrib><creatorcontrib>Iwasa, Y</creatorcontrib><creatorcontrib>Kawasaki, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishihaya, Shinichi</au><au>Uchida, Masaki</au><au>Kozuka, Yusuke</au><au>Iwasa, Yoshihiro</au><au>Kawasaki, Masashi</au><au>Nishihaya, S</au><au>Uchida, M</au><au>Kozuka, Y</au><au>Iwasa, Y</au><au>Kawasaki, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Insulator–Metal Phase Transitions in Epitaxial Tungsten Oxide Films during Electrolyte-Gating</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-08-31</date><risdate>2016</risdate><volume>8</volume><issue>34</issue><spage>22330</spage><epage>22336</epage><pages>22330-22336</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>An interface between an oxide and an electrolyte gives rise to various processes as exemplified by electrostatic charge accumulation/depletion and electrochemical reactions such as intercalation/decalation under electric field. Here we directly compare typical device operations of those in electric double layer transistor geometry by adopting A-site vacant perovskite WO3 epitaxial thin films as a channel material and two different electrolytes as gating agent. In situ measurements of X-ray diffraction and channel resistance performed during the gating revealed that in both the cases WO3 thin film reaches a new metallic state through multiple phase transitions, accompanied by the change in out-of-plane lattice constant. Electrons are electrostatically accumulated from the interface side with an ionic liquid, while alkaline metal ions are more uniformly intercalated into the film with a polymer electrolyte. We systematically demonstrate this difference in the electrostatic and electrochemical processes, by comparing doped carrier density, lattice deformation behavior, and time constant of the phase transitions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27502546</pmid><doi>10.1021/acsami.6b06593</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-08, Vol.8 (34), p.22330-22336
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1815975032
source American Chemical Society Journals
title Evolution of Insulator–Metal Phase Transitions in Epitaxial Tungsten Oxide Films during Electrolyte-Gating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Insulator%E2%80%93Metal%20Phase%20Transitions%20in%20Epitaxial%20Tungsten%20Oxide%20Films%20during%20Electrolyte-Gating&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Nishihaya,%20Shinichi&rft.date=2016-08-31&rft.volume=8&rft.issue=34&rft.spage=22330&rft.epage=22336&rft.pages=22330-22336&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b06593&rft_dat=%3Cproquest_cross%3E1815975032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1815975032&rft_id=info:pmid/27502546&rfr_iscdi=true