A unified set of experimental organometallic data used to evaluate modern theoretical methods

We applied a test set of ligand dissociation enthalpies derived entirely from a unified experimental approach to evaluate the efficacy of various methods for modeling organometallic chemistry. This differs from most benchmarking studies, as it is common to evaluate theoretical methods by using more...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2016-01, Vol.45 (35), p.13766-13778
Hauptverfasser: Raju, Rajesh K, Bengali, Ashfaq A, Brothers, Edward N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13778
container_issue 35
container_start_page 13766
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 45
creator Raju, Rajesh K
Bengali, Ashfaq A
Brothers, Edward N
description We applied a test set of ligand dissociation enthalpies derived entirely from a unified experimental approach to evaluate the efficacy of various methods for modeling organometallic chemistry. This differs from most benchmarking studies, as it is common to evaluate theoretical methods by using more computationally expensive calculations to provide the target values. With an aim of presenting the best suited functional/functionals for calculations involving the metalligand bond dissociation enthalpies (BDEs) of organometallic complexes, we utilized a database of 30 experimental metalligand bond dissociation enthalpies, and tested for 101 density functionals and 2 ab initio methods, all with a large basis set. We find the most accurate functional is M06 with a mean unsigned error (MUE) of 1.6 kcal mol 1 , followed closely by M06L, B97XD, PW91PW91 and MPWB95 with MUEs of 1.7, 1.8, 2.0, and 2.1 kcal mol 1 respectively. Other top performers are B3LYP-GD3, BLYP-GD3, PBEPBE, CAM-B3LYP-GD3, CAM-B3LYP-GD3BJ, B3LYP-GD3BJ and MN12L; all predict BDEs with MUEs in the range of 2.2 to 2.5 kcal mol 1 . Adding solvent corrections to the gas-phase BDE calculations for these top twelve functionals do not significantly change the MUE value. The well-known and widely used functional B3LYP shows very poor performance for this specific property. However, the empirical dispersion correction to the B3LYP functional has significantly improved its performance in predicting BDEs. It is also worth noting that several modern range-separated functionals predict the bond dissociation enthalpies with an error of 23 kcal mol 1 . We applied a test set of ligand dissociation enthalpies derived entirely from a unified experimental approach to evaluate the efficacy of various methods for modeling organometallic chemistry.
doi_str_mv 10.1039/c6dt02763f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815971120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835645185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-16d8e89a102b551a65dca217f85abb860c906842667b0bb5eaa4bd5e91e910aa3</originalsourceid><addsrcrecordid>eNqNkUFLxDAQhYMouq5evCs5irCapE3aHmV1VVjwsh6lTJOpW2mbNUlF_73RXderMDAD73vv8IaQE84uOUuKK61MYCJTSb1DRjzNskkhknR3ewt1QA69f2VMCCbFPjkQWVTSjI3I8zUd-qZu0FCPgdqa4scKXdNhH6Cl1r1AbzuMd9toaiAAHXyEg6X4Du0AAWlnDbqehiVah6HR0RcdS2v8EdmrofV4vNlj8jS7XUzvJ_PHu4fp9XyiU5aHCVcmx7wAzkQlJQcljQbBszqXUFW5YrpgKk-FUlnFqkoiQFoZiQWPwwCSMTlf566cfRvQh7JrvMa2hR7t4EueJ1KlkufyHyiXRca5YBG9WKPaWe8d1uUqFgPus-Ss_G6-nKqbxU_zswifbXKHqkOzRX-rjsDpGnBeb9W_1yVfBrKInw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815971120</pqid></control><display><type>article</type><title>A unified set of experimental organometallic data used to evaluate modern theoretical methods</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Raju, Rajesh K ; Bengali, Ashfaq A ; Brothers, Edward N</creator><creatorcontrib>Raju, Rajesh K ; Bengali, Ashfaq A ; Brothers, Edward N</creatorcontrib><description>We applied a test set of ligand dissociation enthalpies derived entirely from a unified experimental approach to evaluate the efficacy of various methods for modeling organometallic chemistry. This differs from most benchmarking studies, as it is common to evaluate theoretical methods by using more computationally expensive calculations to provide the target values. With an aim of presenting the best suited functional/functionals for calculations involving the metalligand bond dissociation enthalpies (BDEs) of organometallic complexes, we utilized a database of 30 experimental metalligand bond dissociation enthalpies, and tested for 101 density functionals and 2 ab initio methods, all with a large basis set. We find the most accurate functional is M06 with a mean unsigned error (MUE) of 1.6 kcal mol 1 , followed closely by M06L, B97XD, PW91PW91 and MPWB95 with MUEs of 1.7, 1.8, 2.0, and 2.1 kcal mol 1 respectively. Other top performers are B3LYP-GD3, BLYP-GD3, PBEPBE, CAM-B3LYP-GD3, CAM-B3LYP-GD3BJ, B3LYP-GD3BJ and MN12L; all predict BDEs with MUEs in the range of 2.2 to 2.5 kcal mol 1 . Adding solvent corrections to the gas-phase BDE calculations for these top twelve functionals do not significantly change the MUE value. The well-known and widely used functional B3LYP shows very poor performance for this specific property. However, the empirical dispersion correction to the B3LYP functional has significantly improved its performance in predicting BDEs. It is also worth noting that several modern range-separated functionals predict the bond dissociation enthalpies with an error of 23 kcal mol 1 . We applied a test set of ligand dissociation enthalpies derived entirely from a unified experimental approach to evaluate the efficacy of various methods for modeling organometallic chemistry.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c6dt02763f</identifier><identifier>PMID: 27477470</identifier><language>eng</language><publisher>England</publisher><subject>Bonding ; Effectiveness ; Enthalpy ; Errors ; Functionals ; Mathematical models ; Metalorganic compounds</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2016-01, Vol.45 (35), p.13766-13778</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-16d8e89a102b551a65dca217f85abb860c906842667b0bb5eaa4bd5e91e910aa3</citedby><cites>FETCH-LOGICAL-c408t-16d8e89a102b551a65dca217f85abb860c906842667b0bb5eaa4bd5e91e910aa3</cites><orcidid>0000-0002-0030-3242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27477470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raju, Rajesh K</creatorcontrib><creatorcontrib>Bengali, Ashfaq A</creatorcontrib><creatorcontrib>Brothers, Edward N</creatorcontrib><title>A unified set of experimental organometallic data used to evaluate modern theoretical methods</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>We applied a test set of ligand dissociation enthalpies derived entirely from a unified experimental approach to evaluate the efficacy of various methods for modeling organometallic chemistry. This differs from most benchmarking studies, as it is common to evaluate theoretical methods by using more computationally expensive calculations to provide the target values. With an aim of presenting the best suited functional/functionals for calculations involving the metalligand bond dissociation enthalpies (BDEs) of organometallic complexes, we utilized a database of 30 experimental metalligand bond dissociation enthalpies, and tested for 101 density functionals and 2 ab initio methods, all with a large basis set. We find the most accurate functional is M06 with a mean unsigned error (MUE) of 1.6 kcal mol 1 , followed closely by M06L, B97XD, PW91PW91 and MPWB95 with MUEs of 1.7, 1.8, 2.0, and 2.1 kcal mol 1 respectively. Other top performers are B3LYP-GD3, BLYP-GD3, PBEPBE, CAM-B3LYP-GD3, CAM-B3LYP-GD3BJ, B3LYP-GD3BJ and MN12L; all predict BDEs with MUEs in the range of 2.2 to 2.5 kcal mol 1 . Adding solvent corrections to the gas-phase BDE calculations for these top twelve functionals do not significantly change the MUE value. The well-known and widely used functional B3LYP shows very poor performance for this specific property. However, the empirical dispersion correction to the B3LYP functional has significantly improved its performance in predicting BDEs. It is also worth noting that several modern range-separated functionals predict the bond dissociation enthalpies with an error of 23 kcal mol 1 . We applied a test set of ligand dissociation enthalpies derived entirely from a unified experimental approach to evaluate the efficacy of various methods for modeling organometallic chemistry.</description><subject>Bonding</subject><subject>Effectiveness</subject><subject>Enthalpy</subject><subject>Errors</subject><subject>Functionals</subject><subject>Mathematical models</subject><subject>Metalorganic compounds</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUFLxDAQhYMouq5evCs5irCapE3aHmV1VVjwsh6lTJOpW2mbNUlF_73RXderMDAD73vv8IaQE84uOUuKK61MYCJTSb1DRjzNskkhknR3ewt1QA69f2VMCCbFPjkQWVTSjI3I8zUd-qZu0FCPgdqa4scKXdNhH6Cl1r1AbzuMd9toaiAAHXyEg6X4Du0AAWlnDbqehiVah6HR0RcdS2v8EdmrofV4vNlj8jS7XUzvJ_PHu4fp9XyiU5aHCVcmx7wAzkQlJQcljQbBszqXUFW5YrpgKk-FUlnFqkoiQFoZiQWPwwCSMTlf566cfRvQh7JrvMa2hR7t4EueJ1KlkufyHyiXRca5YBG9WKPaWe8d1uUqFgPus-Ss_G6-nKqbxU_zswifbXKHqkOzRX-rjsDpGnBeb9W_1yVfBrKInw</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Raju, Rajesh K</creator><creator>Bengali, Ashfaq A</creator><creator>Brothers, Edward N</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0030-3242</orcidid></search><sort><creationdate>20160101</creationdate><title>A unified set of experimental organometallic data used to evaluate modern theoretical methods</title><author>Raju, Rajesh K ; Bengali, Ashfaq A ; Brothers, Edward N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-16d8e89a102b551a65dca217f85abb860c906842667b0bb5eaa4bd5e91e910aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bonding</topic><topic>Effectiveness</topic><topic>Enthalpy</topic><topic>Errors</topic><topic>Functionals</topic><topic>Mathematical models</topic><topic>Metalorganic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raju, Rajesh K</creatorcontrib><creatorcontrib>Bengali, Ashfaq A</creatorcontrib><creatorcontrib>Brothers, Edward N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raju, Rajesh K</au><au>Bengali, Ashfaq A</au><au>Brothers, Edward N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A unified set of experimental organometallic data used to evaluate modern theoretical methods</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>45</volume><issue>35</issue><spage>13766</spage><epage>13778</epage><pages>13766-13778</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>We applied a test set of ligand dissociation enthalpies derived entirely from a unified experimental approach to evaluate the efficacy of various methods for modeling organometallic chemistry. This differs from most benchmarking studies, as it is common to evaluate theoretical methods by using more computationally expensive calculations to provide the target values. With an aim of presenting the best suited functional/functionals for calculations involving the metalligand bond dissociation enthalpies (BDEs) of organometallic complexes, we utilized a database of 30 experimental metalligand bond dissociation enthalpies, and tested for 101 density functionals and 2 ab initio methods, all with a large basis set. We find the most accurate functional is M06 with a mean unsigned error (MUE) of 1.6 kcal mol 1 , followed closely by M06L, B97XD, PW91PW91 and MPWB95 with MUEs of 1.7, 1.8, 2.0, and 2.1 kcal mol 1 respectively. Other top performers are B3LYP-GD3, BLYP-GD3, PBEPBE, CAM-B3LYP-GD3, CAM-B3LYP-GD3BJ, B3LYP-GD3BJ and MN12L; all predict BDEs with MUEs in the range of 2.2 to 2.5 kcal mol 1 . Adding solvent corrections to the gas-phase BDE calculations for these top twelve functionals do not significantly change the MUE value. The well-known and widely used functional B3LYP shows very poor performance for this specific property. However, the empirical dispersion correction to the B3LYP functional has significantly improved its performance in predicting BDEs. It is also worth noting that several modern range-separated functionals predict the bond dissociation enthalpies with an error of 23 kcal mol 1 . We applied a test set of ligand dissociation enthalpies derived entirely from a unified experimental approach to evaluate the efficacy of various methods for modeling organometallic chemistry.</abstract><cop>England</cop><pmid>27477470</pmid><doi>10.1039/c6dt02763f</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0030-3242</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2016-01, Vol.45 (35), p.13766-13778
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_miscellaneous_1815971120
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Bonding
Effectiveness
Enthalpy
Errors
Functionals
Mathematical models
Metalorganic compounds
title A unified set of experimental organometallic data used to evaluate modern theoretical methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20unified%20set%20of%20experimental%20organometallic%20data%20used%20to%20evaluate%20modern%20theoretical%20methods&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Raju,%20Rajesh%20K&rft.date=2016-01-01&rft.volume=45&rft.issue=35&rft.spage=13766&rft.epage=13778&rft.pages=13766-13778&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c6dt02763f&rft_dat=%3Cproquest_cross%3E1835645185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1815971120&rft_id=info:pmid/27477470&rfr_iscdi=true