Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images

Staining and scanning of tissue samples for microscopic examination is fraught with undesirable color variations arising from differences in raw materials and manufacturing techniques of stain vendors, staining protocols of labs, and color responses of digital scanners. When comparing tissue samples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2016-08, Vol.35 (8), p.1962-1971
Hauptverfasser: Vahadane, Abhishek, Tingying Peng, Sethi, Amit, Albarqouni, Shadi, Lichao Wang, Baust, Maximilian, Steiger, Katja, Schlitter, Anna Melissa, Esposito, Irene, Navab, Nassir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1971
container_issue 8
container_start_page 1962
container_title IEEE transactions on medical imaging
container_volume 35
creator Vahadane, Abhishek
Tingying Peng
Sethi, Amit
Albarqouni, Shadi
Lichao Wang
Baust, Maximilian
Steiger, Katja
Schlitter, Anna Melissa
Esposito, Irene
Navab, Nassir
description Staining and scanning of tissue samples for microscopic examination is fraught with undesirable color variations arising from differences in raw materials and manufacturing techniques of stain vendors, staining protocols of labs, and color responses of digital scanners. When comparing tissue samples, color normalization and stain separation of the tissue images can be helpful for both pathologists and software. Techniques that are used for natural images fail to utilize structural properties of stained tissue samples and produce undesirable color distortions. The stain concentration cannot be negative. Tissue samples are stained with only a few stains and most tissue regions are characterized by at most one effective stain. We model these physical phenomena that define the tissue structure by first decomposing images in an unsupervised manner into stain density maps that are sparse and non-negative. For a given image, we combine its stain density maps with stain color basis of a pathologist-preferred target image, thus altering only its color while preserving its structure described by the maps. Stain density correlation with ground truth and preference by pathologists were higher for images normalized using our method when compared to other alternatives. We also propose a computationally faster extension of this technique for large whole-slide images that selects an appropriate patch sample instead of using the entire image to compute the stain color basis.
doi_str_mv 10.1109/TMI.2016.2529665
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815708125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7460968</ieee_id><sourcerecordid>1809048619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-2fc6c5ef880369151a8bde1edbd46453e02f5f6f8961d9b60847047483d2fbb63</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVoSbZp74FAMOTSi7czsiRLx7IkzUL6AZtCDwUj26NFwR8byS60v75adptDTzkNYp73ZcTD2AXCEhHMh4fP6yUHVEsuuVFKnrAFSqlzLsWPV2wBvNQ5gOJn7E2MjwAoJJhTdsZLVEKW5YL93ExhbqY5UP4tUKTwyw_bbDV2Y8i-jKG3nf9jJz8OmR3abLOzIVK2mawfsg2l12HnEn3n45RiW9_YLlv3dkvxLXvtbBfp3XGes--3Nw-ru_z-66f16uN93khhppy7RjWSnNZQKIMSra5bQmrrVqQzCwLupFNOG4WtqRVoUYIohS5a7upaFefs_aF3F8anmeJU9T421HV2oHGOFepCKuSFMS9AUZagkcsXoGBAaIX71uv_0MdxDkP6857SqJMenSg4UE0YYwzkql3wvQ2_K4Rq77NKPqu9z-roM0WujsVz3VP7HPgnMAGXB8AT0fO6FAqM0sVfYH6i2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808185298</pqid></control><display><type>article</type><title>Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Vahadane, Abhishek ; Tingying Peng ; Sethi, Amit ; Albarqouni, Shadi ; Lichao Wang ; Baust, Maximilian ; Steiger, Katja ; Schlitter, Anna Melissa ; Esposito, Irene ; Navab, Nassir</creator><creatorcontrib>Vahadane, Abhishek ; Tingying Peng ; Sethi, Amit ; Albarqouni, Shadi ; Lichao Wang ; Baust, Maximilian ; Steiger, Katja ; Schlitter, Anna Melissa ; Esposito, Irene ; Navab, Nassir</creatorcontrib><description>Staining and scanning of tissue samples for microscopic examination is fraught with undesirable color variations arising from differences in raw materials and manufacturing techniques of stain vendors, staining protocols of labs, and color responses of digital scanners. When comparing tissue samples, color normalization and stain separation of the tissue images can be helpful for both pathologists and software. Techniques that are used for natural images fail to utilize structural properties of stained tissue samples and produce undesirable color distortions. The stain concentration cannot be negative. Tissue samples are stained with only a few stains and most tissue regions are characterized by at most one effective stain. We model these physical phenomena that define the tissue structure by first decomposing images in an unsupervised manner into stain density maps that are sparse and non-negative. For a given image, we combine its stain density maps with stain color basis of a pathologist-preferred target image, thus altering only its color while preserving its structure described by the maps. Stain density correlation with ground truth and preference by pathologists were higher for images normalized using our method when compared to other alternatives. We also propose a computationally faster extension of this technique for large whole-slide images that selects an appropriate patch sample instead of using the entire image to compute the stain color basis.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2016.2529665</identifier><identifier>PMID: 27164577</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biology ; Color ; Color normalization ; Coloring Agents - chemistry ; Computer programs ; Density ; Estimation ; Histograms ; histopathological images ; Image color analysis ; Medical imaging ; Microscopy ; non-negative matrix factorization ; Pathology ; Separation ; Software ; Sparse matrices ; sparse regularization ; Staining ; Staining and Labeling ; unsupervised stain separation</subject><ispartof>IEEE transactions on medical imaging, 2016-08, Vol.35 (8), p.1962-1971</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-2fc6c5ef880369151a8bde1edbd46453e02f5f6f8961d9b60847047483d2fbb63</citedby><cites>FETCH-LOGICAL-c549t-2fc6c5ef880369151a8bde1edbd46453e02f5f6f8961d9b60847047483d2fbb63</cites><orcidid>0000-0003-2361-2600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7460968$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27164577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vahadane, Abhishek</creatorcontrib><creatorcontrib>Tingying Peng</creatorcontrib><creatorcontrib>Sethi, Amit</creatorcontrib><creatorcontrib>Albarqouni, Shadi</creatorcontrib><creatorcontrib>Lichao Wang</creatorcontrib><creatorcontrib>Baust, Maximilian</creatorcontrib><creatorcontrib>Steiger, Katja</creatorcontrib><creatorcontrib>Schlitter, Anna Melissa</creatorcontrib><creatorcontrib>Esposito, Irene</creatorcontrib><creatorcontrib>Navab, Nassir</creatorcontrib><title>Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Staining and scanning of tissue samples for microscopic examination is fraught with undesirable color variations arising from differences in raw materials and manufacturing techniques of stain vendors, staining protocols of labs, and color responses of digital scanners. When comparing tissue samples, color normalization and stain separation of the tissue images can be helpful for both pathologists and software. Techniques that are used for natural images fail to utilize structural properties of stained tissue samples and produce undesirable color distortions. The stain concentration cannot be negative. Tissue samples are stained with only a few stains and most tissue regions are characterized by at most one effective stain. We model these physical phenomena that define the tissue structure by first decomposing images in an unsupervised manner into stain density maps that are sparse and non-negative. For a given image, we combine its stain density maps with stain color basis of a pathologist-preferred target image, thus altering only its color while preserving its structure described by the maps. Stain density correlation with ground truth and preference by pathologists were higher for images normalized using our method when compared to other alternatives. We also propose a computationally faster extension of this technique for large whole-slide images that selects an appropriate patch sample instead of using the entire image to compute the stain color basis.</description><subject>Biology</subject><subject>Color</subject><subject>Color normalization</subject><subject>Coloring Agents - chemistry</subject><subject>Computer programs</subject><subject>Density</subject><subject>Estimation</subject><subject>Histograms</subject><subject>histopathological images</subject><subject>Image color analysis</subject><subject>Medical imaging</subject><subject>Microscopy</subject><subject>non-negative matrix factorization</subject><subject>Pathology</subject><subject>Separation</subject><subject>Software</subject><subject>Sparse matrices</subject><subject>sparse regularization</subject><subject>Staining</subject><subject>Staining and Labeling</subject><subject>unsupervised stain separation</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1r3DAQhkVoSbZp74FAMOTSi7czsiRLx7IkzUL6AZtCDwUj26NFwR8byS60v75adptDTzkNYp73ZcTD2AXCEhHMh4fP6yUHVEsuuVFKnrAFSqlzLsWPV2wBvNQ5gOJn7E2MjwAoJJhTdsZLVEKW5YL93ExhbqY5UP4tUKTwyw_bbDV2Y8i-jKG3nf9jJz8OmR3abLOzIVK2mawfsg2l12HnEn3n45RiW9_YLlv3dkvxLXvtbBfp3XGes--3Nw-ru_z-66f16uN93khhppy7RjWSnNZQKIMSra5bQmrrVqQzCwLupFNOG4WtqRVoUYIohS5a7upaFefs_aF3F8anmeJU9T421HV2oHGOFepCKuSFMS9AUZagkcsXoGBAaIX71uv_0MdxDkP6857SqJMenSg4UE0YYwzkql3wvQ2_K4Rq77NKPqu9z-roM0WujsVz3VP7HPgnMAGXB8AT0fO6FAqM0sVfYH6i2A</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Vahadane, Abhishek</creator><creator>Tingying Peng</creator><creator>Sethi, Amit</creator><creator>Albarqouni, Shadi</creator><creator>Lichao Wang</creator><creator>Baust, Maximilian</creator><creator>Steiger, Katja</creator><creator>Schlitter, Anna Melissa</creator><creator>Esposito, Irene</creator><creator>Navab, Nassir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2361-2600</orcidid></search><sort><creationdate>201608</creationdate><title>Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images</title><author>Vahadane, Abhishek ; Tingying Peng ; Sethi, Amit ; Albarqouni, Shadi ; Lichao Wang ; Baust, Maximilian ; Steiger, Katja ; Schlitter, Anna Melissa ; Esposito, Irene ; Navab, Nassir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-2fc6c5ef880369151a8bde1edbd46453e02f5f6f8961d9b60847047483d2fbb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biology</topic><topic>Color</topic><topic>Color normalization</topic><topic>Coloring Agents - chemistry</topic><topic>Computer programs</topic><topic>Density</topic><topic>Estimation</topic><topic>Histograms</topic><topic>histopathological images</topic><topic>Image color analysis</topic><topic>Medical imaging</topic><topic>Microscopy</topic><topic>non-negative matrix factorization</topic><topic>Pathology</topic><topic>Separation</topic><topic>Software</topic><topic>Sparse matrices</topic><topic>sparse regularization</topic><topic>Staining</topic><topic>Staining and Labeling</topic><topic>unsupervised stain separation</topic><toplevel>online_resources</toplevel><creatorcontrib>Vahadane, Abhishek</creatorcontrib><creatorcontrib>Tingying Peng</creatorcontrib><creatorcontrib>Sethi, Amit</creatorcontrib><creatorcontrib>Albarqouni, Shadi</creatorcontrib><creatorcontrib>Lichao Wang</creatorcontrib><creatorcontrib>Baust, Maximilian</creatorcontrib><creatorcontrib>Steiger, Katja</creatorcontrib><creatorcontrib>Schlitter, Anna Melissa</creatorcontrib><creatorcontrib>Esposito, Irene</creatorcontrib><creatorcontrib>Navab, Nassir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vahadane, Abhishek</au><au>Tingying Peng</au><au>Sethi, Amit</au><au>Albarqouni, Shadi</au><au>Lichao Wang</au><au>Baust, Maximilian</au><au>Steiger, Katja</au><au>Schlitter, Anna Melissa</au><au>Esposito, Irene</au><au>Navab, Nassir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2016-08</date><risdate>2016</risdate><volume>35</volume><issue>8</issue><spage>1962</spage><epage>1971</epage><pages>1962-1971</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Staining and scanning of tissue samples for microscopic examination is fraught with undesirable color variations arising from differences in raw materials and manufacturing techniques of stain vendors, staining protocols of labs, and color responses of digital scanners. When comparing tissue samples, color normalization and stain separation of the tissue images can be helpful for both pathologists and software. Techniques that are used for natural images fail to utilize structural properties of stained tissue samples and produce undesirable color distortions. The stain concentration cannot be negative. Tissue samples are stained with only a few stains and most tissue regions are characterized by at most one effective stain. We model these physical phenomena that define the tissue structure by first decomposing images in an unsupervised manner into stain density maps that are sparse and non-negative. For a given image, we combine its stain density maps with stain color basis of a pathologist-preferred target image, thus altering only its color while preserving its structure described by the maps. Stain density correlation with ground truth and preference by pathologists were higher for images normalized using our method when compared to other alternatives. We also propose a computationally faster extension of this technique for large whole-slide images that selects an appropriate patch sample instead of using the entire image to compute the stain color basis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27164577</pmid><doi>10.1109/TMI.2016.2529665</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2361-2600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2016-08, Vol.35 (8), p.1962-1971
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_1815708125
source MEDLINE; IEEE Electronic Library (IEL)
subjects Biology
Color
Color normalization
Coloring Agents - chemistry
Computer programs
Density
Estimation
Histograms
histopathological images
Image color analysis
Medical imaging
Microscopy
non-negative matrix factorization
Pathology
Separation
Software
Sparse matrices
sparse regularization
Staining
Staining and Labeling
unsupervised stain separation
title Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T19%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-Preserving%20Color%20Normalization%20and%20Sparse%20Stain%20Separation%20for%20Histological%20Images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Vahadane,%20Abhishek&rft.date=2016-08&rft.volume=35&rft.issue=8&rft.spage=1962&rft.epage=1971&rft.pages=1962-1971&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2016.2529665&rft_dat=%3Cproquest_ieee_%3E1809048619%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808185298&rft_id=info:pmid/27164577&rft_ieee_id=7460968&rfr_iscdi=true