Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer

MYC-mediated pathogenesis in lung cancer continues to attract interest for new therapeutic strategies. In this study, we describe a transgenic mouse model of KRAS-driven lung adenocarcinoma that affords reversible activation of MYC, used here as a tool for lipidomic profiling of MYC-dependent lung t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2016-08, Vol.76 (16), p.4608-4618
Hauptverfasser: Hall, Zoe, Ament, Zsuzsanna, Wilson, Catherine H, Burkhart, Deborah L, Ashmore, Tom, Koulman, Albert, Littlewood, Trevor, Evan, Gerard I, Griffin, Julian L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4618
container_issue 16
container_start_page 4608
container_title Cancer research (Chicago, Ill.)
container_volume 76
creator Hall, Zoe
Ament, Zsuzsanna
Wilson, Catherine H
Burkhart, Deborah L
Ashmore, Tom
Koulman, Albert
Littlewood, Trevor
Evan, Gerard I
Griffin, Julian L
description MYC-mediated pathogenesis in lung cancer continues to attract interest for new therapeutic strategies. In this study, we describe a transgenic mouse model of KRAS-driven lung adenocarcinoma that affords reversible activation of MYC, used here as a tool for lipidomic profiling of MYC-dependent lung tumors formed in this model. Advanced mass spectrometric imaging and surface analysis techniques were used to characterize the spatial and temporal changes in lipid composition in lung tissue. We found that normal lung tissue was characterized predominantly by saturated phosphatidylcholines and phosphatidylglycerols, which are major lipid components of pulmonary surfactant. In contrast, tumor tissues displayed an increase in phosphatidylinositols and arachidonate-containing phospholipids that can serve as signaling precursors. Deactivating MYC resulted in a rapid and dramatic decrease in arachidonic acid and its eicosanoid metabolites. In tumors with high levels of MYC, we found an increase in cytosolic phospholipase A2 (cPLA2) activity with a preferential release of membrane-bound arachidonic acid, stimulating the lipoxygenase (LOX) and COX pathways also amplified by MYC at the level of gene expression. Deactivating MYC lowered cPLA2 activity along with COX2 and 5-LOX mRNA levels. Notably, inhibiting the COX/5-LOX pathways in vivo reduced tumor burden in a manner associated with reduced cell proliferation. Taken together, our results show how MYC drives the production of specific eicosanoids critical for lung cancer cell survival and proliferation, with possible implications for the use of COX and LOX pathway inhibitors for lung cancer therapy. Cancer Res; 76(16); 4608-18. ©2016 AACR.
doi_str_mv 10.1158/0008-5472.CAN-15-3403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815702494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812223334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-1213f703c6f202c99a49c6752913bbbd27facc519fbed394e4efd933739a5cce3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EouXxCSAv2aTYHruON0hVKA8phQ2sLcdxUFBe2Amif0-ilq5ZzR3p3BnpIHRFyYJSEd8SQuJIcMkWyeoloiICTuAIzamAOJKci2M0PzAzdBbC57gKSsQpmjEJMEY1R3ebrcXrn867EMq2wfe-_HYBrzLnvWl6nJZdmeON603WVmWocdngdGg-cGIa6_wFOilMFdzlfp6j94f1W_IUpa-Pz8kqjSzntI8oo1BIAnZZMMKsUoYru5SCKQpZluVMFsZaQVWRuRwUd9wVuQKQoIyw1sE5utnd7Xz7NbjQ67oM1lWVaVw7BE1jKiRhXPH_oIwxAJhQsUOtb0PwrtCdL2vjt5oSPVnWk0E9GdSjZU2FniyPvev9iyGrXX5o_WmFX55bdpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812223334</pqid></control><display><type>article</type><title>Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hall, Zoe ; Ament, Zsuzsanna ; Wilson, Catherine H ; Burkhart, Deborah L ; Ashmore, Tom ; Koulman, Albert ; Littlewood, Trevor ; Evan, Gerard I ; Griffin, Julian L</creator><creatorcontrib>Hall, Zoe ; Ament, Zsuzsanna ; Wilson, Catherine H ; Burkhart, Deborah L ; Ashmore, Tom ; Koulman, Albert ; Littlewood, Trevor ; Evan, Gerard I ; Griffin, Julian L</creatorcontrib><description>MYC-mediated pathogenesis in lung cancer continues to attract interest for new therapeutic strategies. In this study, we describe a transgenic mouse model of KRAS-driven lung adenocarcinoma that affords reversible activation of MYC, used here as a tool for lipidomic profiling of MYC-dependent lung tumors formed in this model. Advanced mass spectrometric imaging and surface analysis techniques were used to characterize the spatial and temporal changes in lipid composition in lung tissue. We found that normal lung tissue was characterized predominantly by saturated phosphatidylcholines and phosphatidylglycerols, which are major lipid components of pulmonary surfactant. In contrast, tumor tissues displayed an increase in phosphatidylinositols and arachidonate-containing phospholipids that can serve as signaling precursors. Deactivating MYC resulted in a rapid and dramatic decrease in arachidonic acid and its eicosanoid metabolites. In tumors with high levels of MYC, we found an increase in cytosolic phospholipase A2 (cPLA2) activity with a preferential release of membrane-bound arachidonic acid, stimulating the lipoxygenase (LOX) and COX pathways also amplified by MYC at the level of gene expression. Deactivating MYC lowered cPLA2 activity along with COX2 and 5-LOX mRNA levels. Notably, inhibiting the COX/5-LOX pathways in vivo reduced tumor burden in a manner associated with reduced cell proliferation. Taken together, our results show how MYC drives the production of specific eicosanoids critical for lung cancer cell survival and proliferation, with possible implications for the use of COX and LOX pathway inhibitors for lung cancer therapy. Cancer Res; 76(16); 4608-18. ©2016 AACR.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-15-3403</identifier><identifier>PMID: 27335109</identifier><language>eng</language><publisher>United States</publisher><subject>Adenocarcinoma - metabolism ; Adenocarcinoma - pathology ; Adenocarcinoma of Lung ; Animals ; Disease Models, Animal ; Eicosanoids - metabolism ; Immunohistochemistry ; Lipid Metabolism - physiology ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Mass Spectrometry ; Mice ; Mice, Transgenic ; Polymerase Chain Reaction ; Proto-Oncogene Proteins c-myc - metabolism ; Proto-Oncogene Proteins p21(ras) - genetics ; Signal Transduction - physiology ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><ispartof>Cancer research (Chicago, Ill.), 2016-08, Vol.76 (16), p.4608-4618</ispartof><rights>2016 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-1213f703c6f202c99a49c6752913bbbd27facc519fbed394e4efd933739a5cce3</citedby><cites>FETCH-LOGICAL-c441t-1213f703c6f202c99a49c6752913bbbd27facc519fbed394e4efd933739a5cce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27335109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Zoe</creatorcontrib><creatorcontrib>Ament, Zsuzsanna</creatorcontrib><creatorcontrib>Wilson, Catherine H</creatorcontrib><creatorcontrib>Burkhart, Deborah L</creatorcontrib><creatorcontrib>Ashmore, Tom</creatorcontrib><creatorcontrib>Koulman, Albert</creatorcontrib><creatorcontrib>Littlewood, Trevor</creatorcontrib><creatorcontrib>Evan, Gerard I</creatorcontrib><creatorcontrib>Griffin, Julian L</creatorcontrib><title>Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>MYC-mediated pathogenesis in lung cancer continues to attract interest for new therapeutic strategies. In this study, we describe a transgenic mouse model of KRAS-driven lung adenocarcinoma that affords reversible activation of MYC, used here as a tool for lipidomic profiling of MYC-dependent lung tumors formed in this model. Advanced mass spectrometric imaging and surface analysis techniques were used to characterize the spatial and temporal changes in lipid composition in lung tissue. We found that normal lung tissue was characterized predominantly by saturated phosphatidylcholines and phosphatidylglycerols, which are major lipid components of pulmonary surfactant. In contrast, tumor tissues displayed an increase in phosphatidylinositols and arachidonate-containing phospholipids that can serve as signaling precursors. Deactivating MYC resulted in a rapid and dramatic decrease in arachidonic acid and its eicosanoid metabolites. In tumors with high levels of MYC, we found an increase in cytosolic phospholipase A2 (cPLA2) activity with a preferential release of membrane-bound arachidonic acid, stimulating the lipoxygenase (LOX) and COX pathways also amplified by MYC at the level of gene expression. Deactivating MYC lowered cPLA2 activity along with COX2 and 5-LOX mRNA levels. Notably, inhibiting the COX/5-LOX pathways in vivo reduced tumor burden in a manner associated with reduced cell proliferation. Taken together, our results show how MYC drives the production of specific eicosanoids critical for lung cancer cell survival and proliferation, with possible implications for the use of COX and LOX pathway inhibitors for lung cancer therapy. Cancer Res; 76(16); 4608-18. ©2016 AACR.</description><subject>Adenocarcinoma - metabolism</subject><subject>Adenocarcinoma - pathology</subject><subject>Adenocarcinoma of Lung</subject><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>Eicosanoids - metabolism</subject><subject>Immunohistochemistry</subject><subject>Lipid Metabolism - physiology</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Mass Spectrometry</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Polymerase Chain Reaction</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0EouXxCSAv2aTYHruON0hVKA8phQ2sLcdxUFBe2Amif0-ilq5ZzR3p3BnpIHRFyYJSEd8SQuJIcMkWyeoloiICTuAIzamAOJKci2M0PzAzdBbC57gKSsQpmjEJMEY1R3ebrcXrn867EMq2wfe-_HYBrzLnvWl6nJZdmeON603WVmWocdngdGg-cGIa6_wFOilMFdzlfp6j94f1W_IUpa-Pz8kqjSzntI8oo1BIAnZZMMKsUoYru5SCKQpZluVMFsZaQVWRuRwUd9wVuQKQoIyw1sE5utnd7Xz7NbjQ67oM1lWVaVw7BE1jKiRhXPH_oIwxAJhQsUOtb0PwrtCdL2vjt5oSPVnWk0E9GdSjZU2FniyPvev9iyGrXX5o_WmFX55bdpI</recordid><startdate>20160815</startdate><enddate>20160815</enddate><creator>Hall, Zoe</creator><creator>Ament, Zsuzsanna</creator><creator>Wilson, Catherine H</creator><creator>Burkhart, Deborah L</creator><creator>Ashmore, Tom</creator><creator>Koulman, Albert</creator><creator>Littlewood, Trevor</creator><creator>Evan, Gerard I</creator><creator>Griffin, Julian L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20160815</creationdate><title>Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer</title><author>Hall, Zoe ; Ament, Zsuzsanna ; Wilson, Catherine H ; Burkhart, Deborah L ; Ashmore, Tom ; Koulman, Albert ; Littlewood, Trevor ; Evan, Gerard I ; Griffin, Julian L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-1213f703c6f202c99a49c6752913bbbd27facc519fbed394e4efd933739a5cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenocarcinoma - metabolism</topic><topic>Adenocarcinoma - pathology</topic><topic>Adenocarcinoma of Lung</topic><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>Eicosanoids - metabolism</topic><topic>Immunohistochemistry</topic><topic>Lipid Metabolism - physiology</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Mass Spectrometry</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Polymerase Chain Reaction</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Zoe</creatorcontrib><creatorcontrib>Ament, Zsuzsanna</creatorcontrib><creatorcontrib>Wilson, Catherine H</creatorcontrib><creatorcontrib>Burkhart, Deborah L</creatorcontrib><creatorcontrib>Ashmore, Tom</creatorcontrib><creatorcontrib>Koulman, Albert</creatorcontrib><creatorcontrib>Littlewood, Trevor</creatorcontrib><creatorcontrib>Evan, Gerard I</creatorcontrib><creatorcontrib>Griffin, Julian L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Zoe</au><au>Ament, Zsuzsanna</au><au>Wilson, Catherine H</au><au>Burkhart, Deborah L</au><au>Ashmore, Tom</au><au>Koulman, Albert</au><au>Littlewood, Trevor</au><au>Evan, Gerard I</au><au>Griffin, Julian L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2016-08-15</date><risdate>2016</risdate><volume>76</volume><issue>16</issue><spage>4608</spage><epage>4618</epage><pages>4608-4618</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>MYC-mediated pathogenesis in lung cancer continues to attract interest for new therapeutic strategies. In this study, we describe a transgenic mouse model of KRAS-driven lung adenocarcinoma that affords reversible activation of MYC, used here as a tool for lipidomic profiling of MYC-dependent lung tumors formed in this model. Advanced mass spectrometric imaging and surface analysis techniques were used to characterize the spatial and temporal changes in lipid composition in lung tissue. We found that normal lung tissue was characterized predominantly by saturated phosphatidylcholines and phosphatidylglycerols, which are major lipid components of pulmonary surfactant. In contrast, tumor tissues displayed an increase in phosphatidylinositols and arachidonate-containing phospholipids that can serve as signaling precursors. Deactivating MYC resulted in a rapid and dramatic decrease in arachidonic acid and its eicosanoid metabolites. In tumors with high levels of MYC, we found an increase in cytosolic phospholipase A2 (cPLA2) activity with a preferential release of membrane-bound arachidonic acid, stimulating the lipoxygenase (LOX) and COX pathways also amplified by MYC at the level of gene expression. Deactivating MYC lowered cPLA2 activity along with COX2 and 5-LOX mRNA levels. Notably, inhibiting the COX/5-LOX pathways in vivo reduced tumor burden in a manner associated with reduced cell proliferation. Taken together, our results show how MYC drives the production of specific eicosanoids critical for lung cancer cell survival and proliferation, with possible implications for the use of COX and LOX pathway inhibitors for lung cancer therapy. Cancer Res; 76(16); 4608-18. ©2016 AACR.</abstract><cop>United States</cop><pmid>27335109</pmid><doi>10.1158/0008-5472.CAN-15-3403</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2016-08, Vol.76 (16), p.4608-4618
issn 0008-5472
1538-7445
language eng
recordid cdi_proquest_miscellaneous_1815702494
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adenocarcinoma - metabolism
Adenocarcinoma - pathology
Adenocarcinoma of Lung
Animals
Disease Models, Animal
Eicosanoids - metabolism
Immunohistochemistry
Lipid Metabolism - physiology
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Mass Spectrometry
Mice
Mice, Transgenic
Polymerase Chain Reaction
Proto-Oncogene Proteins c-myc - metabolism
Proto-Oncogene Proteins p21(ras) - genetics
Signal Transduction - physiology
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
title Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T16%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myc%20Expression%20Drives%20Aberrant%20Lipid%20Metabolism%20in%20Lung%20Cancer&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Hall,%20Zoe&rft.date=2016-08-15&rft.volume=76&rft.issue=16&rft.spage=4608&rft.epage=4618&rft.pages=4608-4618&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.CAN-15-3403&rft_dat=%3Cproquest_cross%3E1812223334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812223334&rft_id=info:pmid/27335109&rfr_iscdi=true