Study of static lateral behavior of battered pile group foundation at I-10 Twin Span Bridge using three-dimensional finite element modeling
In this study, the static lateral behavior of a battered pile group foundation was investigated using three-dimensional finite element (FE) analysis. The FE model was used to simulate the static lateral load test that was performed during the construction of the I-10 Twin Span Bridge over Lake Pontc...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2016, Vol.53 (6), p.962-973 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the static lateral behavior of a battered pile group foundation was investigated using three-dimensional finite element (FE) analysis. The FE model was used to simulate the static lateral load test that was performed during the construction of the I-10 Twin Span Bridge over Lake Pontchartrain, La., in which two adjacent bridge piers were pulled against each other. The pier of interest was supported by 24, 1:6 batter, 34 m long piles in a 6 × 4 row configuration. The FE model of the battered pile group was developed in Abaqus and verified using the results from the field test. The model utilized an advanced constitutive model for concrete, which allowed distinct behavior in tension and compression, and introduced damage to the concrete stiffness. The soil domain comprised of several layers in which the constitutive behavior of clay layers was modeled using the anisotropic modified Cam-clay (AMCC) model, and for sands using the elastic perfectly plastic Drucker–Prager (DP) model. FE results showed good agreement with the results of the lateral load test in terms of lateral deformations and bending moments. The results showed that the middle rows carried a larger share of lateral load than the first and the last rows. The pile group resisted a maximum lateral load of 2494 t at which the piles were damaged within a 6 m zone from the bottom of the pile cap. The edge piles carried larger internal forces and exhibited more damage compared to the inner piles. The soil resistance profiles showed that soil layering influenced the distribution of resistance between the soil layers. A series of p–y curves were extracted from the FE model, and then used to study the influence of the group effect on the soil resistance. The p–y curves showed that the group effect reduced the soil resistance in all rows, with the lowest resistance in the third row. Finally, the p-multipliers were calculated using the extracted p–y curves, and compared to the reported p-multipliers for vertical pile groups. |
---|---|
ISSN: | 0008-3674 1208-6010 |
DOI: | 10.1139/cgj-2015-0345 |